About the Project

of%20one%20variable

AdvancedHelp

(0.002 seconds)

21—30 of 30 matching pages

21: Bibliography L
β–Ί
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • β–Ί
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright Ο‰ function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • β–Ί
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • β–Ί
  • D. H. Lehmer (1940) On the maxima and minima of Bernoulli polynomials. Amer. Math. Monthly 47 (8), pp. 533–538.
  • β–Ί
  • N. Levinson (1974) More than one third of zeros of Riemann’s zeta-function are on Οƒ = 1 2 . Advances in Math. 13 (4), pp. 383–436.
  • 22: 26.10 Integer Partitions: Other Restrictions
    β–ΊIf more than one restriction applies, then the restrictions are separated by commas, for example, p ⁑ ( π’Ÿ ⁒ 2 , T , n ) . … β–Ί
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    β–Ί β–Ίβ–Ίβ–Ί
    p ⁑ ( π’Ÿ , n ) p ⁑ ( π’Ÿ ⁒ 2 , n ) p ⁑ ( π’Ÿ ⁒ 2 , T , n ) p ⁑ ( π’Ÿ ⁒ 3 , n )
    20 64 31 20 18
    β–Ί
    β–Ί
    26.10.3 ( 1 x ) ⁒ m , n = 0 p m ⁑ ( k , π’Ÿ , n ) ⁒ x m ⁒ q n = m = 0 k [ k m ] q ⁒ q m ⁒ ( m + 1 ) / 2 ⁒ x m = j = 1 k ( 1 + x ⁒ q j ) , | x | < 1 ,
    β–Ί
    26.10.20 [ [ x ] ] = { x x 1 2 , x β„€ , 0 , x β„€ .
    23: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • β–Ί
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 24: 12.11 Zeros
    β–ΊFor further information on these cases see Dean (1966). … β–Ί
    §12.11(ii) Asymptotic Expansions of Large Zeros
    β–ΊNumerical calculations in this case show that z 1 2 , s corresponds to the s th zero on the string; compare §7.13(ii). … β–Ί
    12.11.8 q 0 ⁑ ( ΢ ) = t ⁒ ( ΢ ) .
    β–Ί
    12.11.9 u a , 1 2 1 2 ⁒ ΞΌ ⁒ ( 1 1.85575 708 ⁒ ΞΌ 4 / 3 0.34438 34 ⁒ ΞΌ 8 / 3 0.16871 5 ⁒ ΞΌ 4 0.11414 ⁒ ΞΌ 16 / 3 0.0808 ⁒ ΞΌ 20 / 3 β‹― ) ,
    25: 30.9 Asymptotic Approximations and Expansions
    β–Ί
    2 20 ⁒ Ξ² 5 = 527 ⁒ q 7 61529 ⁒ q 5 10 43961 ⁒ q 3 22 41599 ⁒ q + 32 ⁒ m 2 ⁒ ( 5739 ⁒ q 5 + 1 27550 ⁒ q 3 + 2 98951 ⁒ q ) 2048 ⁒ m 4 ⁒ ( 355 ⁒ q 3 + 1505 ⁒ q ) + 65536 ⁒ m 6 ⁒ q .
    β–ΊFor uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). … β–ΊFor uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). … β–ΊThe asymptotic behavior of π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) and π–°π—Œ n m ⁑ ( x , Ξ³ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). …
    26: Bibliography I
    β–Ί
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • β–Ί
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • β–Ί
  • M. E. H. Ismail (2000b) More on electrostatic models for zeros of orthogonal polynomials. Numer. Funct. Anal. Optim. 21 (1-2), pp. 191–204.
  • β–Ί
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • β–Ί
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • 27: 11.6 Asymptotic Expansions
    β–Ί
    11.6.1 𝐊 Ξ½ ⁑ ( z ) 1 Ο€ ⁒ k = 0 Ξ“ ⁑ ( k + 1 2 ) ⁒ ( 1 2 ⁒ z ) Ξ½ 2 ⁒ k 1 Ξ“ ⁑ ( Ξ½ + 1 2 k ) , | ph ⁑ z | Ο€ Ξ΄ ,
    β–ΊIf the series on the right-hand side of (11.6.1) is truncated after m ( 0 ) terms, then the remainder term R m ⁑ ( z ) is O ⁑ ( z Ξ½ 2 ⁒ m 1 ) . … β–Ί
    11.6.2 𝐌 Ξ½ ⁑ ( z ) 1 Ο€ ⁒ k = 0 ( 1 ) k + 1 ⁒ Ξ“ ⁑ ( k + 1 2 ) ⁒ ( 1 2 ⁒ z ) Ξ½ 2 ⁒ k 1 Ξ“ ⁑ ( Ξ½ + 1 2 k ) , | ph ⁑ z | 1 2 ⁒ Ο€ Ξ΄ .
    β–Ί
    11.6.5 𝐇 Ξ½ ⁑ ( z ) , 𝐋 Ξ½ ⁑ ( z ) z Ο€ ⁒ Ξ½ ⁒ 2 ⁒ ( e ⁒ z 2 ⁒ Ξ½ ) Ξ½ , | ph ⁑ Ξ½ | Ο€ Ξ΄ .
    β–Ί
    c 3 ⁑ ( λ ) = 20 ⁒ λ 6 4 ⁒ λ 4 ,
    28: Bibliography S
    β–Ί
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • β–Ί
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • β–Ί
  • W. M. Smart (1962) Text-book on Spherical Astronomy. Fifth edition, Cambridge University Press, Cambridge.
  • β–Ί
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • β–Ί
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 29: 9.9 Zeros
    β–ΊOn the real line, Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) each have an infinite number of zeros, all of which are negative. … β–ΊIf k is regarded as a continuous variable, then … β–Ί
    9.9.6 a k = T ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 1 ) ) ,
    β–Ί
    9.9.7 Ai ⁑ ( a k ) = ( 1 ) k 1 ⁒ V ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 1 ) ) ,
    β–Ί
    9.9.8 a k = U ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 3 ) ) ,
    30: 8.17 Incomplete Beta Functions
    β–ΊThroughout §§8.17 and 8.18 we assume that a > 0 , b > 0 , and 0 x 1 . … β–Ί
    8.17.4 I x ⁑ ( a , b ) = 1 I 1 x ⁑ ( b , a ) .
    β–ΊWith a > 0 , b > 0 , and 0 < x < 1 , …where x < c < 1 and the branches of s a and ( 1 s ) b are continuous on the path and assume their principal values when s = c . … β–Ί
    8.17.24 I x ⁑ ( m , n ) = ( 1 x ) n ⁒ j = m ( n + j 1 j ) ⁒ x j , m , n positive integers; 0 x < 1 .