About the Project

numerical inversion

AdvancedHelp

(0.002 seconds)

21—30 of 39 matching pages

21: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • A. Iserles (1996) A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics, No. 15, Cambridge University Press, Cambridge.
  • M. E. H. Ismail (2000b) More on electrostatic models for zeros of orthogonal polynomials. Numer. Funct. Anal. Optim. 21 (1-2), pp. 191–204.
  • 22: Bibliography T
  • N. M. Temme (1992a) Asymptotic inversion of incomplete gamma functions. Math. Comp. 58 (198), pp. 755–764.
  • N. M. Temme (1997) Numerical algorithms for uniform Airy-type asymptotic expansions. Numer. Algorithms 15 (2), pp. 207–225.
  • N. M. Temme (2000) Numerical and asymptotic aspects of parabolic cylinder functions. J. Comput. Appl. Math. 121 (1-2), pp. 221–246.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 23: Bibliography B
  • W. Bartky (1938) Numerical calculation of a generalized complete elliptic integral. Rev. Mod. Phys. 10, pp. 264–269.
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • G. Blanch (1964) Numerical evaluation of continued fractions. SIAM Rev. 6 (4), pp. 383–421.
  • G. Blanch (1966) Numerical aspects of Mathieu eigenvalues. Rend. Circ. Mat. Palermo (2) 15, pp. 51–97.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • 24: Bibliography J
  • D. Jacobs and F. Lambert (1972) On the numerical calculation of polylogarithms. Nordisk Tidskr. Informationsbehandling (BIT) 12 (4), pp. 581–585.
  • D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth (1995) Sur l’inversion de y α e y au moyen des nombres de Stirling associés. C. R. Acad. Sci. Paris Sér. I Math. 320 (12), pp. 1449–1452.
  • U. D. Jentschura and E. Lötstedt (2012) Numerical calculation of Bessel, Hankel and Airy functions. Computer Physics Communications 183 (3), pp. 506–519.
  • W. B. Jones and W. J. Thron (1974) Numerical stability in evaluating continued fractions. Math. Comp. 28 (127), pp. 795–810.
  • 25: Bibliography K
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • A. V. Kashevarov (1998) The second Painlevé equation in electric probe theory. Some numerical solutions. Zh. Vychisl. Mat. Mat. Fiz. 38 (6), pp. 992–1000 (Russian).
  • A. V. Kashevarov (2004) The second Painlevé equation in the electrostatic probe theory: Numerical solutions for the partial absorption of charged particles by the surface. Technical Physics 49 (1), pp. 1–7.
  • K. S. Kölbig, J. A. Mignaco, and E. Remiddi (1970) On Nielsen’s generalized polylogarithms and their numerical calculation. Nordisk Tidskr. Informationsbehandling (BIT) 10, pp. 38–73.
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993) Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge.
  • 26: Bibliography R
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • 27: Bibliography H
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • G. H. Hardy (1952) A Course of Pure Mathematics. 10th edition, Cambridge University Press.
  • M. Heil (1995) Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems. Ph.D. Thesis, Technischen Universität Berlin.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • F. B. Hildebrand (1974) Introduction to Numerical Analysis. 2nd edition, McGraw-Hill Book Co., New York.
  • 28: 3.10 Continued Fractions
    For example, by converting the Maclaurin expansion of arctan z (4.24.3), we obtain a continued fraction with the same region of convergence ( | z | 1 , z ± i ), whereas the continued fraction (4.25.4) converges for all z except on the branch cuts from i to i and i to i . …
    §3.10(iii) Numerical Evaluation of Continued Fractions
    Forward Recurrence Algorithm
    Backward Recurrence Algorithm
    Forward Series Recurrence Algorithm
    29: 3.8 Nonlinear Equations
    §3.8 Nonlinear Equations
    Regula Falsi
    Inverse linear interpolation (§3.3(v)) is used to obtain the first approximation: … Because the method requires only one function evaluation per iteration, its numerical efficiency is ultimately higher than that of Newton’s method. … Corresponding numerical factors in this example for other zeros and other values of j are obtained in Gautschi (1984, §4). …
    30: 10.21 Zeros
    The functions ρ ν ( t ) and σ ν ( t ) are related to the inverses of the phase functions θ ν ( x ) and ϕ ν ( x ) defined in §10.18(i): if ν 0 , then … For the first zeros rounded numerical values of the coefficients are given by … For numerical coefficients for m = 2 , 3 , 4 , 5 see Olver (1951, Tables 3–6). … Next, z ( ζ ) is the inverse of the function ζ = ζ ( z ) defined by (10.20.3). … The latter reference includes numerical tables of the first few coefficients in the uniform asymptotic expansions. …