About the Project

multiplication formula

AdvancedHelp

(0.001 seconds)

21—27 of 27 matching pages

21: 17.9 Further Transformations of Ο• r r + 1 Functions
β–Ί
17.9.3_5 Ο• 1 2 ⁑ ( a , b c ; q , z ) = ( c / a , c / b ; q ) ( c , c / ( a ⁒ b ) ; q ) ⁒ Ο• 2 3 ⁑ ( a , b , a ⁒ b ⁒ z / c q ⁒ a ⁒ b / c , 0 ; q , q ) + ( a , b , a ⁒ b ⁒ z / c ; q ) ( c , a ⁒ b / c , z ; q ) ⁒ Ο• 2 3 ⁑ ( c / a , c / b , z q ⁒ c / ( a ⁒ b ) , 0 ; q , q ) ,
β–Ί
17.9.6 Ο• 2 3 ⁑ ( a , b , c d , e ; q , d ⁒ e / ( a ⁒ b ⁒ c ) ) = ( e / a , d ⁒ e / ( b ⁒ c ) ; q ) ( e , d ⁒ e / ( a ⁒ b ⁒ c ) ; q ) ⁒ Ο• 2 3 ⁑ ( a , d / b , d / c d , d ⁒ e / ( b ⁒ c ) ; q , e / a ) ,
β–Ί
17.9.13 Ο• 2 3 ⁑ ( a , b , c d , e ; q , d ⁒ e a ⁒ b ⁒ c ) = ( e / b , e / c ; q ) ( e , e / ( b ⁒ c ) ; q ) ⁒ Ο• 2 3 ⁑ ( d / a , b , c d , b ⁒ c ⁒ q / e ; q , q ) + ( d / a , b , c , d ⁒ e / ( b ⁒ c ) ; q ) ( d , e , b ⁒ c / e , d ⁒ e / ( a ⁒ b ⁒ c ) ; q ) ⁒ Ο• 2 3 ⁑ ( e / b , e / c , d ⁒ e / ( a ⁒ b ⁒ c ) d ⁒ e / ( b ⁒ c ) , e ⁒ q / ( b ⁒ c ) ; q , q ) .
β–Ί
17.9.14 Ο• 3 4 ⁑ ( q n , a , b , c d , e , f ; q , q ) = ( e / a , f / a ; q ) n ( e , f ; q ) n ⁒ a n ⁒ Ο• 3 4 ⁑ ( q n , a , d / b , d / c d , a ⁒ q 1 n / e , a ⁒ q 1 n / f ; q , q ) = ( a , e ⁒ f / ( a ⁒ b ) , e ⁒ f / ( a ⁒ c ) ; q ) n ( e , f , e ⁒ f / ( a ⁒ b ⁒ c ) ; q ) n ⁒ Ο• 3 4 ⁑ ( q n , e / a , f / a , e ⁒ f / ( a ⁒ b ⁒ c ) e ⁒ f / ( a ⁒ b ) , e ⁒ f / ( a ⁒ c ) , q 1 n / a ; q , q ) .
β–Ί
Gasper’s q -Analog of Clausen’s Formula (16.12.2)
22: Bibliography
β–Ί
  • M. Abramowitz and I. A. Stegun (Eds.) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • β–Ί
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • β–Ί
  • K. Aomoto (1987) Special value of the hypergeometric function F 2 3 and connection formulae among asymptotic expansions. J. Indian Math. Soc. (N.S.) 51, pp. 161–221.
  • β–Ί
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • β–Ί
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • 23: Bibliography K
    β–Ί
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • β–Ί
  • M. K. Kerimov and S. L. Skorokhodov (1986) On multiple zeros of derivatives of Bessel’s cylindrical functions. Dokl. Akad. Nauk SSSR 288 (2), pp. 285–288 (Russian).
  • β–Ί
  • M. K. Kerimov and S. L. Skorokhodov (1987) On the calculation of the multiple complex roots of the derivatives of cylindrical Bessel functions. Zh. Vychisl. Mat. i Mat. Fiz. 27 (11), pp. 1628–1639, 1758.
  • β–Ί
  • M. K. Kerimov and S. L. Skorokhodov (1988) Multiple complex zeros of derivatives of the cylindrical Bessel functions. Dokl. Akad. Nauk SSSR 299 (3), pp. 614–618 (Russian).
  • β–Ί
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • 24: Bibliography C
    β–Ί
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • β–Ί
  • L. Carlitz (1961a) A recurrence formula for ΞΆ ⁒ ( 2 ⁒ n ) . Proc. Amer. Math. Soc. 12 (6), pp. 991–992.
  • β–Ί
  • J. Choi and A. K. Rathie (2013) An extension of a Kummer’s quadratic transformation formula with an application. Proc. Jangjeon Math. Soc. 16 (2), pp. 229–235.
  • β–Ί
  • D. V. Chudnovsky and G. V. Chudnovsky (1988) Approximations and Complex Multiplication According to Ramanujan. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.), pp. 375–472.
  • β–Ί
  • R. Cools (2003) An encyclopaedia of cubature formulas. J. Complexity 19 (3), pp. 445–453.
  • 25: 1.9 Calculus of a Complex Variable
    β–ΊA contour is simple if it contains no multiple points, that is, for every pair of distinct values t 1 , t 2 of t , z ⁑ ( t 1 ) z ⁑ ( t 2 ) . … β–Ί
    Cauchy’s Integral Formula
    β–Ί
    Operations
    26: 27.13 Functions
    β–ΊWhereas multiplicative number theory is concerned with functions arising from prime factorization, additive number theory treats functions related to addition of integers. … β–ΊA general formula states that … β–ΊExplicit formulas for r k ⁑ ( n ) have been obtained by similar methods for k = 6 , 8 , 10 , and 12 , but they are more complicated. Exact formulas for r k ⁑ ( n ) have also been found for k = 3 , 5 , and 7 , and for all even k 24 . …Also, Milne (1996, 2002) announce new infinite families of explicit formulas extending Jacobi’s identities. …
    27: 4.35 Identities
    β–Ί
    §4.35(i) Addition Formulas
    β–Ί
    §4.35(iii) Multiples of the Argument