About the Project

inverse Jacobian elliptic functions

AdvancedHelp

(0.008 seconds)

11—17 of 17 matching pages

11: 20.11 Generalizations and Analogs
If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … As in §20.11(ii), the modulus k of elliptic integrals (§19.2(ii)), Jacobian elliptic functions22.2), and Weierstrass elliptic functions23.6(ii)) can be expanded in q -series via (20.9.1). …This is Jacobi’s inversion problem of §20.9(ii). … Each provides an extension of Jacobi’s inversion problem. …
12: 22.10 Maclaurin Series
§22.10(i) Maclaurin Series in z
The full expansions converge when | z | < min ( K ( k ) , K ( k ) ) .
§22.10(ii) Maclaurin Series in k and k
Further terms may be derived from the differential equations (22.13.13), (22.13.14), (22.13.15), or from the integral representations of the inverse functions in §22.15(ii). …
13: 22.2 Definitions
§22.2 Definitions
Inversely, … As a function of z , with fixed k , each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real. … … The Jacobian functions are related in the following way. …
14: 19.10 Relations to Other Functions
§19.10 Relations to Other Functions
§19.10(i) Theta and Elliptic Functions
For relations of Legendre’s integrals to theta functions, Jacobian functions, and Weierstrass functions, see §§20.9(i), 22.15(ii), and 23.6(iv), respectively. …
§19.10(ii) Elementary Functions
For relations to the Gudermannian function gd ( x ) and its inverse gd 1 ( x ) 4.23(viii)), see (19.6.8) and …
15: Errata
  • Paragraph Inversion Formula (in §35.2)

    The wording was changed to make the integration variable more apparent.

  • Figure 4.3.1

    This figure was rescaled, with symmetry lines added, to make evident the symmetry due to the inverse relationship between the two functions.

    See accompanying text

    Reported 2015-11-12 by James W. Pitman.

  • Equations (22.19.6), (22.19.7), (22.19.8), (22.19.9)

    These equations were rewritten with the modulus (second argument) of the Jacobian elliptic function defined explicitly in the preceding line of text.

  • Equation (22.19.2)
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) )

    Originally the first argument to the function sn was given incorrectly as t . The correct argument is t + K .

    Reported 2014-03-05 by Svante Janson.

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • 16: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • P. L. Walker (1996) Elliptic Functions. A Constructive Approach. John Wiley & Sons Ltd., Chichester-New York.
  • P. L. Walker (2003) The analyticity of Jacobian functions with respect to the parameter k . Proc. Roy. Soc. London Ser A 459, pp. 2569–2574.
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • A. Weil (1999) Elliptic Functions According to Eisenstein and Kronecker. Classics in Mathematics, Springer-Verlag, Berlin.
  • 17: Bibliography T
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 95–96.
  • N. M. Temme (1992a) Asymptotic inversion of incomplete gamma functions. Math. Comp. 58 (198), pp. 755–764.
  • N. M. Temme (1992b) Asymptotic inversion of the incomplete beta function. J. Comput. Appl. Math. 41 (1-2), pp. 145–157.
  • H. C. Thacher Jr. (1963) Algorithm 165: Complete elliptic integrals. Comm. ACM 6 (4), pp. 163–164.
  • B. A. Troesch and H. R. Troesch (1973) Eigenfrequencies of an elliptic membrane. Math. Comp. 27 (124), pp. 755–765.