About the Project

integer%20order

AdvancedHelp

(0.002 seconds)

1—10 of 22 matching pages

1: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • A. Adelberg (1996) Congruences of p -adic integer order Bernoulli numbers. J. Number Theory 59 (2), pp. 374–388.
  • F. A. Alhargan (2000) Algorithm 804: Subroutines for the computation of Mathieu functions of integer orders. ACM Trans. Math. Software 26 (3), pp. 408–414.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • 2: 26.14 Permutations: Order Notation
    §26.14 Permutations: Order Notation
    The set 𝔖 n 26.13) can be viewed as the collection of all ordered lists of elements of { 1 , 2 , , n } : { σ ( 1 ) σ ( 2 ) σ ( n ) } . …
    26.14.1 inv ( σ ) = 1 j < k n σ ( j ) > σ ( k ) 1 .
    Equivalently, this is the sum over 1 j < n of the number of integers less than σ ( j ) that lie in positions to the right of the j th position: inv ( 35247816 ) = 2 + 3 + 1 + 1 + 2 + 2 + 0 = 11 .
    26.14.2 maj ( σ ) = 1 j < n σ ( j ) > σ ( j + 1 ) j .
    3: 23.9 Laurent and Other Power Series
    23.9.1 c n = ( 2 n 1 ) w 𝕃 { 0 } w 2 n , n = 2 , 3 , 4 , .
    c 2 = 1 20 g 2 ,
    23.9.5 c n = 3 ( 2 n + 1 ) ( n 3 ) m = 2 n 2 c m c n m , n 4 .
    23.9.6 ( ω j + t ) = e j + ( 3 e j 2 5 c 2 ) t 2 + ( 10 c 2 e j + 21 c 3 ) t 4 + ( 7 c 2 e j 2 + 21 c 3 e j + 5 c 2 2 ) t 6 + O ( t 8 ) ,
    23.9.8 a m , n = 3 ( m + 1 ) a m + 1 , n 1 + 16 3 ( n + 1 ) a m 2 , n + 1 1 3 ( 2 m + 3 n 1 ) ( 4 m + 6 n 1 ) a m 1 , n .
    4: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988a) Algorithms for computing Bessel functions of half-integer order with complex arguments. Zh. Vychisl. Mat. i Mat. Fiz. 28 (10), pp. 1449–1460, 1597.
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley, L. J. Comrie, J. C. P. Miller, D. H. Sadler, and A. J. Thompson (1952) Bessel Functions. Part II: Functions of Positive Integer Order. British Association for the Advancement of Science, Mathematical Tables, Volume 10, Cambridge University Press, Cambridge.
  • W. Börsch-Supan (1960) Algorithm 21: Bessel function for a set of integer orders. Comm. ACM 3 (11), pp. 600.
  • 5: 26.13 Permutations: Cycle Notation
    26.13.1 [ 1 2 3 n σ ( 1 ) σ ( 2 ) σ ( 3 ) σ ( n ) ] .
    In cycle notation, the elements in each cycle are put inside parentheses, ordered so that σ ( j ) immediately follows j or, if j is the last listed element of the cycle, then σ ( j ) is the first element of the cycle. … An adjacent transposition is a transposition of two consecutive integers. …
    26.13.5 ( j 1 , j 2 , , j k ) = ( j 1 , j 2 ) ( j 2 , j 3 ) ( j k 2 , j k 1 ) ( j k 1 , j k ) .
    26.13.6 ( j , k ) = ( k 1 , k ) ( k 2 , k 1 ) ( j + 1 , j + 2 ) ( j , j + 1 ) ( j + 1 , j + 2 ) ( k 1 , k ) .
    6: 28.8 Asymptotic Expansions for Large q
    28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    28.8.2 b m + 1 ( h 2 ) a m ( h 2 ) = 2 4 m + 5 m ! ( 2 π ) 1 / 2 h m + ( 3 / 2 ) e 4 h ( 1 6 m 2 + 14 m + 7 32 h + O ( 1 h 2 ) ) .
    28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
    28.8.7 S ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 2 m + 1 8 h + m 4 + 2 m 3 121 m 2 122 m 84 2048 h 2 + ) 1 / 2 .
    28.8.9 W m ± ( x ) = e ± 2 h sin x ( cos x ) m + 1 { ( cos ( 1 2 x + 1 4 π ) ) 2 m + 1 , ( sin ( 1 2 x + 1 4 π ) ) 2 m + 1 ,
    7: 18.40 Methods of Computation
    A simple set of choices is spelled out in Gordon (1968) which gives a numerically stable algorithm for direct computation of the recursion coefficients in terms of the moments, followed by construction of the J-matrix and quadrature weights and abscissas, and we will follow this approach: Let N be a positive integer and define …
    18.40.2 a 1 = μ 0 , a n = P 1 , n + 1 P 1 , n P 1 , n 1 , n = 2 , , 2 N + 3 ,
    18.40.3 α 0 = a 2 , α n = a 2 n + 1 + a 2 n + 2 , β n = a 2 n a 2 n + 1 , n = 1 , , N .
    The question is then: how is this possible given only F N ( z ) , rather than F ( z ) itself? F N ( z ) often converges to smooth results for z off the real axis for z at a distance greater than the pole spacing of the x n , this may then be followed by approximate numerical analytic continuation via fitting to lower order continued fractions (either Padé, see §3.11(iv), or pointwise continued fraction approximants, see Schlessinger (1968, Appendix)), to F N ( z ) and evaluating these on the real axis in regions of higher pole density that those of the approximating function. Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …
    8: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
    §11.6(ii) Large | ν | , Fixed z
    11.6.6 𝐊 ν ( λ ν ) ( 1 2 λ ν ) ν 1 π Γ ( ν + 1 2 ) k = 0 k ! c k ( λ ) ν k , | ph ν | 1 2 π δ ,
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    9: 6.16 Mathematical Applications
    6.16.2 S n ( x ) = k = 0 n 1 sin ( ( 2 k + 1 ) x ) 2 k + 1 = 1 2 0 x sin ( 2 n t ) sin t d t = 1 2 Si ( 2 n x ) + R n ( x ) ,
    6.16.3 R n ( x ) = 1 2 0 x ( 1 sin t 1 t ) sin ( 2 n t ) d t .
    6.16.4 R n ( x ) = O ( n 1 ) , n ,
    6.16.5 li ( x ) π ( x ) = O ( x ln x ) , x ,
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    10: 18.39 Applications in the Physical Sciences
    The nature of, and notations and common vocabulary for, the eigenvalues and eigenfunctions of self-adjoint second order differential operators is overviewed in §1.18. … The fundamental quantum Schrödinger operator, also called the Hamiltonian, , is a second order differential operator of the form … ϵ 0 is referred to as the ground state, all others, n = 1 , 2 , , in order of increasing energy being excited states. … Namely the k th eigenfunction, listed in order of increasing eigenvalues, starting at k = 0 , has precisely k nodes, as real zeros of wave-functions away from boundaries are often referred to. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …