About the Project

infinite%20partial%20fractions

AdvancedHelp

(0.002 seconds)

11—20 of 311 matching pages

11: 18.39 Applications in the Physical Sciences
with an infinite set of orthonormal L 2 eigenfunctions … This indicates that the Laguerre polynomials appearing in (18.39.29) are not classical OP’s, and in fact, even though infinite in number for fixed l , do not form a complete set. Namely for fixed l the infinite set labeled by p describe only the L 2 bound states for that single l , omitting the continuum briefly mentioned below, and which is the subject of Chapter 33, and so an unusual example of the mixed spectra of §1.18(viii). … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … These, taken together with the infinite sets of bound states for each l , form complete sets. …
12: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • 13: 3.4 Differentiation
    §3.4(iii) Partial Derivatives
    The results in this subsection for the partial derivatives follow from Panow (1955, Table 10). Those for the Laplacian and the biharmonic operator follow from the formulas for the partial derivatives. …
    14: 36.4 Bifurcation Sets
    36.4.4 2 s 2 Φ ( U ) ( s , t ; 𝐱 ) 2 t 2 Φ ( U ) ( s , t ; 𝐱 ) ( 2 s t Φ ( U ) ( s , t ; 𝐱 ) ) 2 = 0 .
    x = 9 20 z 2 .
    x = 3 20 z 2 ,
    15: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    16: 25.11 Hurwitz Zeta Function
    See accompanying text
    Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    25.11.8 ζ ( s , 1 2 a ) = ζ ( s , 1 2 a + 1 2 ) + 2 s n = 0 ( 1 ) n ( n + a ) s , s > 0 , s 1 , 0 < a 1 .
    25.11.35 n = 0 ( 1 ) n ( n + a ) s = 1 Γ ( s ) 0 x s 1 e a x 1 + e x d x = 2 s ( ζ ( s , 1 2 a ) ζ ( s , 1 2 ( 1 + a ) ) ) , a > 0 , s > 0 ; or a = 0 , a 0 , 0 < s < 1 .
    25.11.38 k = 1 ( n + k k ) ζ ( n + k + 1 , a ) z k = ( 1 ) n n ! ( ψ ( n ) ( a ) ψ ( n ) ( a z ) ) , n = 1 , 2 , 3 , , a > 0 , | z | < | a | .
    25.11.39 k = 2 k 2 k ζ ( k + 1 , 3 4 ) = 8 G ,
    17: 10.73 Physical Applications
    10.73.1 2 V = 1 r r ( r V r ) + 1 r 2 2 V ϕ 2 + 2 V z 2 = 0 ,
    10.73.2 2 ψ = 1 c 2 2 ψ t 2 ,
    See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). …
    10.73.3 4 W + λ 2 2 W t 2 = 0 .
    10.73.4 ( 2 + k 2 ) f = 1 ρ 2 ρ ( ρ 2 f ρ ) + 1 ρ 2 sin θ θ ( sin θ f θ ) + 1 ρ 2 sin 2 θ 2 f ϕ 2 + k 2 f .
    18: Bibliography L
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • H. Levine and J. Schwinger (1948) On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74 (8), pp. 958–974.
  • I. M. Longman (1956) Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Philos. Soc. 52 (4), pp. 764–768.
  • S. K. Lucas and H. A. Stone (1995) Evaluating infinite integrals involving Bessel functions of arbitrary order. J. Comput. Appl. Math. 64 (3), pp. 217–231.
  • J. N. Lyness (1985) Integrating some infinite oscillating tails. J. Comput. Appl. Math. 12/13, pp. 109–117.
  • 19: 5.19 Mathematical Applications
    As shown in Temme (1996b, §3.4), the results given in §5.7(ii) can be used to sum infinite series of rational functions. … By decomposition into partial fractions1.2(iii)) … Many special functions f ( z ) can be represented as a Mellin–Barnes integral, that is, an integral of a product of gamma functions, reciprocals of gamma functions, and a power of z , the integration contour being doubly-infinite and eventually parallel to the imaginary axis at both ends. …
    20: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    §22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    22.12.13 2 K cs ( 2 K t , k ) = lim N n = N N ( 1 ) n π tan ( π ( t n τ ) ) = lim N n = N N ( 1 ) n ( lim M m = M M 1 t m n τ ) .