About the Project

finite%20Fourier%20series

AdvancedHelp

(0.002 seconds)

11—20 of 380 matching pages

11: Bibliography L
β–Ί
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright Ο‰ function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • β–Ί
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • β–Ί
  • K. V. Leung and S. S. Ghaderpanah (1979) An application of the finite element approximation method to find the complex zeros of the modified Bessel function K n ⁒ ( z ) . Math. Comp. 33 (148), pp. 1299–1306.
  • β–Ί
  • M. J. Lighthill (1958) An Introduction to Fourier Analysis and Generalised Functions. Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York.
  • β–Ί
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.
  • 12: 34.6 Definition: 9 ⁒ j Symbol
    β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
    34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
    β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
    13: 1.8 Fourier Series
    §1.8 Fourier Series
    β–Ίβ–Ί
    Uniqueness of Fourier Series
    β–Ί
    §1.8(ii) Convergence
    β–Ί
    14: 6.16 Mathematical Applications
    β–ΊConsider the Fourier seriesβ–ΊCompare Figure 6.16.1. … β–ΊIt occurs with Fourier-series expansions of all piecewise continuous functions. … … β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 6.16.2: The logarithmic integral li ⁑ ( x ) , together with vertical bars indicating the value of Ο€ ⁑ ( x ) for x = 10 , 20 , , 1000 . Magnify
    15: 26.2 Basic Definitions
    β–ΊGiven a finite set S with permutation Οƒ , a cycle is an ordered equivalence class of elements of S where j is equivalent to k if there exists an β„“ = β„“ ⁑ ( j , k ) such that j = Οƒ β„“ ⁑ ( k ) , where Οƒ 1 = Οƒ and Οƒ β„“ is the composition of Οƒ with Οƒ β„“ 1 . … β–Ί
    Table 26.2.1: Partitions p ⁑ ( n ) .
    β–Ί β–Ίβ–Ίβ–Ί
    n p ⁑ ( n ) n p ⁑ ( n ) n p ⁑ ( n )
    3 3 20 627 37 21637
    β–Ί
    16: 15.17 Mathematical Applications
    β–ΊHarmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform (§1.14(ii)) or as a specialization of a group Fourier transform. … β–ΊThese monodromy groups are finite iff the solutions of Riemann’s differential equation are all algebraic. …
    17: 3.8 Nonlinear Equations
    β–ΊFor the computation of zeros of orthogonal polynomials as eigenvalues of finite tridiagonal matrices (§3.5(vi)), see Gil et al. (2007a, pp. 205–207). For the computation of zeros of Bessel functions, Coulomb functions, and conical functions as eigenvalues of finite parts of infinite tridiagonal matrices, see Grad and ZakrajΕ‘ek (1973), Ikebe (1975), Ikebe et al. (1991), Ball (2000), and Gil et al. (2007a, pp. 205–213). … β–Ί
    3.8.15 p ⁑ ( x ) = ( x 1 ) ⁒ ( x 2 ) ⁒ β‹― ⁒ ( x 20 )
    β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . …
    18: 20.14 Methods of Computation
    β–ΊThe Fourier series of §20.2(i) usually converge rapidly because of the factors q ( n + 1 2 ) 2 or q n 2 , and provide a convenient way of calculating values of ΞΈ j ⁑ ( z | Ο„ ) . … β–ΊHence the first term of the series (20.2.3) for ΞΈ 3 ⁑ ( z ⁒ Ο„ | Ο„ ) suffices for most purposes. In theory, starting from any value of Ο„ , a finite number of applications of the transformations Ο„ Ο„ + 1 and Ο„ 1 / Ο„ will result in a value of Ο„ with ⁑ Ο„ 3 / 2 ; see §23.18. …
    19: 15.15 Sums
    β–ΊFor compendia of finite sums and infinite series involving hypergeometric functions see Prudnikov et al. (1990, §§5.3 and 6.7) and Hansen (1975). …
    20: Bibliography M
    β–Ί
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • β–Ί
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • L. M. Milne-Thomson (1933) The Calculus of Finite Differences. Macmillan and Co. Ltd., London.
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.