About the Project

finite sum of 6j symbols

AdvancedHelp

(0.005 seconds)

1—10 of 12 matching pages

1: 34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
2: 34.4 Definition: 6 j Symbol
§34.4 Definition: 6 j Symbol
The 6 j symbol can be expressed as the finite sumFor alternative expressions for the 6 j symbol, written either as a finite sum or as other terminating generalized hypergeometric series F 3 4 of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).
3: 34.5 Basic Properties: 6 j Symbol
Examples are provided by: …
4: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • G. Rota, D. Kahaner, and A. Odlyzko (1973) On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, pp. 684–760.
  • M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr. (1959) The 3 - j and 6 - j Symbols. The Technology Press, MIT, Cambridge, MA.
  • K. Rottbrand (2000) Finite-sum rules for Macdonald’s functions and Hankel’s symbols. Integral Transform. Spec. Funct. 10 (2), pp. 115–124.
  • 5: Mathematical Introduction
    complex plane (excluding infinity).
    empty sums zero.
    n !! double factorial: 2 4 6 n if n = 2 , 4 , 6 , ; 1 3 5 n if n = 1 , 3 , 5 , ; 1 if n = 0 , 1 .
    < is finite, or converges.
    ( a , b ] or [ a , b ) half-closed intervals.
    [ a j , k ] or [ a j k ] matrix with ( j , k ) th element a j , k or a j k .
     J. …
    6: 10.22 Integrals
    §10.22(ii) Integrals over Finite Intervals
    When α = m = 1 , 2 , 3 , the left-hand side of (10.22.36) is the m th repeated integral of J ν ( x ) (§§1.4(v) and 1.15(vi)). … where j ν , and j ν , m are zeros of J ν ( x ) 10.21(i)), and δ , m is Kronecker’s symbol. … where α and α m are positive zeros of a J ν ( x ) + b x J ν ( x ) . … …
    7: Errata
  • Subsection 31.11(iv)

    Just below (31.11.17), P j has been replaced with P j 6 .

  • Chapters 10 Bessel Functions, 18 Orthogonal Polynomials, 34 3j, 6j, 9j Symbols

    The Legendre polynomial P n was mistakenly identified as the associated Legendre function P n in §§10.54, 10.59, 10.60, 18.18, 18.41, 34.3 (and was thus also affected by the bug reported below). These symbols now link correctly to their definitions. Reported by Roy Hughes on 2022-05-23

  • Section 34.1

    The relation between Clebsch-Gordan and 3 j symbols was clarified, and the sign of m 3 was changed for readability. The reference Condon and Shortley (1935) for the Clebsch-Gordan coefficients was replaced by Edmonds (1974) and Rotenberg et al. (1959) and the references for 3 j , 6 j , 9 j symbols were made more precise in §34.1.

  • Section 34.1

    The reference for Clebsch-Gordan coefficients, Condon and Shortley (1935), was replaced by Edmonds (1974) and Rotenberg et al. (1959). The references for 3 j , 6 j , 9 j symbols were made more precise.

  • Equation (34.7.4)
    34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 )

    Originally the third 3 j symbol in the summation was written incorrectly as ( j 31 j 32 j 33 m 13 m 23 m 33 ) .

    Reported 2015-01-19 by Yan-Rui Liu.

  • 8: Bibliography F
  • J. L. Fields and Y. L. Luke (1963b) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. J. Math. Anal. Appl. 6 (3), pp. 394–403.
  • J. L. Fields (1983) Uniform asymptotic expansions of a class of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 14 (6), pp. 1204–1253.
  • J. P. M. Flude (1998) The Edmonds asymptotic formulas for the 3 j and 6 j symbols. J. Math. Phys. 39 (7), pp. 3906–3915.
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • T. Fort (1948) Finite Differences and Difference Equations in the Real Domain. Clarendon Press, Oxford.
  • 9: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1935b) The surface of an ellipsoid. Quart. J. Math., Oxford Ser. 6, pp. 280–287.
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • C. Y. Wu (1982) A series of inequalities for Mills’s ratio. Acta Math. Sinica 25 (6), pp. 660–670.
  • 10: 18.38 Mathematical Applications
    3 j and 6 j Symbols
    The 6 j symbol (34.4.3), with an alternative expression as a terminating balanced F 3 4 of unit argument, can be expressend in terms of Racah polynomials (18.26.3). The orthogonality relations (34.5.14) for the 6 j symbols can be rewritten in terms of orthogonality relations for Racah polynomials as given by (18.25.9)–(18.25.12). … …