About the Project

expansions in spherical Bessel functions

AdvancedHelp

(0.015 seconds)

21—30 of 32 matching pages

21: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988b) Algorithms for evaluating spherical Bessel functions in the complex domain. Zh. Vychisl. Mat. i Mat. Fiz. 28 (12), pp. 1779–1788, 1918.
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • A. R. Barnett (1996) The Calculation of Spherical Bessel Functions and Coulomb Functions. In Computational Atomic Physics: Electron and Positron Collisions with Atoms and Ions, K. Bartschat and J. Hinze (Eds.), pp. 181–202.
  • W. G. C. Boyd (1987) Asymptotic expansions for the coefficient functions that arise in turning-point problems. Proc. Roy. Soc. London Ser. A 410, pp. 35–60.
  • W. G. C. Boyd (1990a) Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
  • 22: Errata
  • Equation (18.34.2)
    18.34.2
    y n ( x ) = y n ( x ; 2 ) = 2 π 1 x 1 e 1 / x 𝗄 n ( x 1 ) ,
    θ n ( x ) = x n y n ( x 1 ) = 2 π 1 x n + 1 e x 𝗄 n ( x )

    This equation was updated to include definitions in terms of the modified spherical Bessel function of the second kind.

  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Expansion

    §4.13 has been enlarged. The Lambert W -function is multi-valued and we use the notation W k ( x ) , k , for the branches. The original two solutions are identified via Wp ( x ) = W 0 ( x ) and Wm ( x ) = W ± 1 ( x 0 i ) .

    Other changes are the introduction of the Wright ω -function and tree T -function in (4.13.1_2) and (4.13.1_3), simplification formulas (4.13.3_1) and (4.13.3_2), explicit representation (4.13.4_1) for d n W d z n , additional Maclaurin series (4.13.5_1) and (4.13.5_2), an explicit expansion about the branch point at z = e 1 in (4.13.9_1), extending the number of terms in asymptotic expansions (4.13.10) and (4.13.11), and including several integrals and integral representations for Lambert W -functions in the end of the section.

  • Chapters 10 Bessel Functions, 18 Orthogonal Polynomials, 34 3j, 6j, 9j Symbols

    The Legendre polynomial P n was mistakenly identified as the associated Legendre function P n in §§10.54, 10.59, 10.60, 18.18, 18.41, 34.3 (and was thus also affected by the bug reported below). These symbols now link correctly to their definitions. Reported by Roy Hughes on 2022-05-23

  • Section 14.30

    In regard to the definition of the spherical harmonics Y l , m , the domain of the integer m originally written as 0 m l has been replaced with the more general | m | l . Because of this change, in the sentence just below (14.30.2), “tesseral for m < l and sectorial for m = l ” has been replaced with “tesseral for | m | < l and sectorial for | m | = l ”. Furthermore, in (14.30.4), m has been replaced with | m | .

    Reported by Ching-Li Chai on 2019-10-05

  • 23: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • L. C. Maximon (1991) On the evaluation of the integral over the product of two spherical Bessel functions. J. Math. Phys. 32 (3), pp. 642–648.
  • N. W. McLachlan (1961) Bessel Functions for Engineers. 2nd edition, Clarendon Press, Oxford.
  • R. Mehrem, J. T. Londergan, and M. H. Macfarlane (1991) Analytic expressions for integrals of products of spherical Bessel functions. J. Phys. A 24 (7), pp. 1435–1453.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.
  • 24: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • J. C. Adams and P. N. Swarztrauber (1997) SPHEREPACK 2.0: A Model Development Facility. NCAR Technical Note Technical Report TN-436-STR, National Center for Atmospheric Research.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • 25: Bibliography L
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • D. Lemoine (1997) Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions. Comput. Phys. Comm. 99 (2-3), pp. 297–306.
  • W. J. Lentz (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics 15 (3), pp. 668–671.
  • J. L. López and N. M. Temme (2010a) Asymptotics and numerics of polynomials used in Tricomi and Buchholz expansions of Kummer functions. Numer. Math. 116 (2), pp. 269–289.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 26: 18.17 Integrals
    and three formulas similar to (18.17.9)–(18.17.11) by symmetry; compare the second row in Table 18.6.1. … In particular, in case of exponential Fourier transforms, we may assume y . … For the Bessel function J ν see §10.2(ii). … In (18.17.21_1) the branch choice of 2 c 1 for 0 < c < 1 2 is unimportant because on the right-hand side only even powers of 2 c 1 occur after expansion of the Hermite polynomial by (18.5.13). … Many of the Fourier transforms given in §18.17(v) have analytic continuations to Laplace transforms. …
    27: 18.18 Sums
    Legendre
    Laguerre
    Hermite
    Ultraspherical
    Hermite
    28: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • I. J. Thompson and A. R. Barnett (1986) Coulomb and Bessel functions of complex arguments and order. J. Comput. Phys. 64 (2), pp. 490–509.
  • 29: 18.34 Bessel Polynomials
    where 𝗄 n is a modified spherical Bessel function (10.49.9), and … expressed in terms of Romanovski–Bessel polynomials, Laguerre polynomials or Whittaker functions, we have …In this limit the finite system of Jacobi polynomials P n ( α , β ) ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of Romanovski–Bessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). For uniform asymptotic expansions of y n ( x ; a ) as n in terms of Airy functions9.2) see Wong and Zhang (1997) and Dunster (2001c). For uniform asymptotic expansions in terms of Hermite polynomials see López and Temme (1999b). …
    30: Bibliography C
  • B. C. Carlson and G. S. Rushbrooke (1950) On the expansion of a Coulomb potential in spherical harmonics. Proc. Cambridge Philos. Soc. 46, pp. 626–633.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • J. P. Coleman and A. J. Monaghan (1983) Chebyshev expansions for the Bessel function J n ( z ) in the complex plane. Math. Comp. 40 (161), pp. 343–366.
  • E. T. Copson (1965) Asymptotic Expansions. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, New York.