About the Project

error%20control

AdvancedHelp

(0.001 seconds)

21—30 of 240 matching pages

21: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 22: Bibliography O
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1964a) Error analysis of Miller’s recurrence algorithm. Math. Comp. 18 (85), pp. 65–74.
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1974) Error bounds for stationary phase approximations. SIAM J. Math. Anal. 5 (1), pp. 19–29.
  • F. W. J. Olver (1980a) Asymptotic approximations and error bounds. SIAM Rev. 22 (2), pp. 188–203.
  • 23: 7.25 Software
    §7.25(ii) erf x , erfc x , i n erfc ( x ) , x
    §7.25(iii) erf z , erfc z , w ( z ) , z
    24: 7.9 Continued Fractions
    §7.9 Continued Fractions
    7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
    7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
    7.9.3 w ( z ) = i π 1 z 1 2 z 1 z 3 2 z 2 z , z > 0 .
    25: 6.20 Approximations
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, pp. 402, 410, and 415–421) gives main diagonal Padé approximations for Ein ( z ) , Si ( z ) , Cin ( z ) (valid near the origin), and E 1 ( z ) (valid for large | z | ); approximate errors are given for a selection of z -values.

  • 26: Software Index
    27: Bibliography F
  • H. E. Fettis, J. C. Caslin, and K. R. Cramer (1973) Complex zeros of the error function and of the complementary error function. Math. Comp. 27 (122), pp. 401–407.
  • C. L. Frenzen and R. Wong (1985b) A uniform asymptotic expansion of the Jacobi polynomials with error bounds. Canad. J. Math. 37 (5), pp. 979–1007.
  • C. L. Frenzen (1987a) Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18 (3), pp. 890–896.
  • C. L. Frenzen (1990) Error bounds for a uniform asymptotic expansion of the Legendre function Q n m ( cosh z ) . SIAM J. Math. Anal. 21 (2), pp. 523–535.
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • 28: 20 Theta Functions
    Chapter 20 Theta Functions
    29: 7.20 Mathematical Applications
    §7.20(i) Asymptotics
    For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
    §7.20(iii) Statistics
    For applications in statistics and probability theory, also for the role of the normal distribution functions (the error functions and probability integrals) in the asymptotics of arbitrary probability density functions, see Johnson et al. (1994, Chapter 13) and Patel and Read (1982, Chapters 2 and 3).
    30: 7.4 Symmetry
    7.4.1 erf ( z ) = erf ( z ) ,
    7.4.2 erfc ( z ) = 2 erfc ( z ) ,
    7.4.3 w ( z ) = 2 e z 2 w ( z ) .