About the Project

error functions and Voigt functions

AdvancedHelp

(0.003 seconds)

1—10 of 11 matching pages

1: 7.21 Physical Applications
2: 7.22 Methods of Computation
§7.22(i) Main Functions
§7.22(iii) Repeated Integrals of the Complementary Error Function
The recursion scheme given by (7.18.1) and (7.18.7) can be used for computing i n erfc ( x ) . …
§7.22(iv) Voigt Functions
The computation of these functions can be based on algorithms for the complementary error function with complex argument; compare (7.19.3). …
3: 7.19 Voigt Functions
7.19.2 𝖵 ( x , t ) = 1 4 π t y e ( x y ) 2 / ( 4 t ) 1 + y 2 d y .
7.19.3 𝖴 ( x , t ) + i 𝖵 ( x , t ) = π 4 t e z 2 erfc z , z = ( 1 i x ) / ( 2 t ) .
4: 7.1 Special Notation
The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . …
5: 7.23 Tables
  • Finn and Mugglestone (1965) includes the Voigt function H ( a , u ) , u [ 0 , 22 ] , a [ 0 , 1 ] , 6S.

  • 6: 7.25 Software
    §7.25(ii) erf x , erfc x , i n erfc ( x ) , x
    §7.25(iii) erf z , erfc z , w ( z ) , z
    No research software has been found for these functions. …
    §7.25(vi) ( x ) , G ( x ) , 𝖴 ( x , t ) , 𝖵 ( x , t ) , x
    No research software has been found for these functions. …
    7: Software Index
    Open Source With Book Commercial
    7 Error Functions, Dawson’s and Fresnel Integrals
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    8: Bibliography Z
  • M. R. Zaghloul and A. N. Ali (2011) Algorithm 916: computing the Faddeyeva and Voigt functions. ACM Trans. Math. Software 38 (2), pp. Art. 15, 22.
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • R. Zanovello (1995) Numerical analysis of Struve functions with applications to other special functions. Ann. Numer. Math. 2 (1-4), pp. 199–208.
  • J. M. Zhang, X. C. Li, and C. K. Qu (1996) Error bounds for asymptotic solutions of second-order linear difference equations. J. Comput. Appl. Math. 71 (2), pp. 191–212.
  • I. J. Zucker (1979) The summation of series of hyperbolic functions. SIAM J. Math. Anal. 10 (1), pp. 192–206.
  • 9: Bibliography L
  • A. Laforgia and S. Sismondi (1988) Monotonicity results and inequalities for the gamma and error functions. J. Comput. Appl. Math. 23 (1), pp. 25–33.
  • X. Li and R. Wong (1994) Error bounds for asymptotic expansions of Laplace convolutions. SIAM J. Math. Anal. 25 (6), pp. 1537–1553.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • A. E. Lynas-Gray (1993) VOIGTL – A fast subroutine for Voigt function evaluation on vector processors. Comput. Phys. Comm. 75 (1-2), pp. 135–142.
  • 10: Bibliography
  • M. Abramowitz and I. A. Stegun (Eds.) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C..
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • Arblib (C) Arb: A C Library for Arbitrary Precision Ball Arithmetic.
  • B. H. Armstrong (1967) Spectrum line profiles: The Voigt function. J. Quant. Spectrosc. Radiat. Transfer 7, pp. 61–88.