About the Project

continuous dynamical systems and mappings

AdvancedHelp

(0.001 seconds)

11—19 of 19 matching pages

11: Bibliography O
  • M. N. Olevskiĭ (1950) Triorthogonal systems in spaces of constant curvature in which the equation Δ 2 u + λ u = 0 allows a complete separation of variables. Mat. Sbornik N.S. 27(69) (3), pp. 379–426 (Russian).
  • G. E. Ordóñez and D. J. Driebe (1996) Spectral decomposition of tent maps using symmetry considerations. J. Statist. Phys. 84 (1-2), pp. 269–276.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • A. M. Ostrowski (1973) Solution of Equations in Euclidean and Banach Spaces. Pure and Applied Mathematics, Vol. 9, Academic Press, New York-London.
  • 12: 1.13 Differential Equations
    As the interval [ a , b ] is mapped, one-to-one, onto [ 0 , c ] by the above definition of t , the integrand being positive, the inverse of this same transformation allows q ^ ( t ) to be calculated from p , q , ρ in (1.13.31), p , ρ C 2 ( a , b ) and q C ( a , b ) . …
    13: 1.16 Distributions
    A mapping Λ : 𝒟 ( I ) is a linear functional if … If the measure μ α is absolutely continuous with density w (see §1.4(v)) then 𝐷 α = Λ w . … A tempered distribution is a continuous linear functional Λ on 𝒯 . … A distribution in n is a continuous linear functional on 𝒟 n . … Tempered distributions are continuous linear functionals on this space of test functions. …
    14: Guide to Searching the DLMF
    To recognize the math symbols and structures, and to accommodate equivalence between various notations and various forms of expression, the search system maps the math part of your queries into a different form. …
    15: Bibliography G
  • GAP (website) The GAP Group, Centre for Interdisciplinary Research in Computational Algebra, University of St. Andrews, United Kingdom.
  • B. Grammaticos, A. Ramani, and V. Papageorgiou (1991) Do integrable mappings have the Painlevé property?. Phys. Rev. Lett. 67 (14), pp. 1825–1828.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • W. Groenevelt (2007) Fourier transforms related to a root system of rank 1. Transform. Groups 12 (1), pp. 77–116.
  • V. I. Gromak (1978) One-parameter systems of solutions of Painlevé equations. Differ. Uravn. 14 (12), pp. 2131–2135 (Russian).
  • 16: Bibliography H
  • M. Heil (1995) Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems. Ph.D. Thesis, Technischen Universität Berlin.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • 17: 2.4 Contour Integrals
    is continuous in z c and analytic in z > c , and by inversion (§1.14(iii)) …
  • (a)

    In a neighborhood of a

    2.4.11
    p ( t ) = p ( a ) + s = 0 p s ( t a ) s + μ ,
    q ( t ) = s = 0 q s ( t a ) s + λ 1 ,

    with λ > 0 , μ > 0 , p 0 0 , and the branches of ( t a ) λ and ( t a ) μ continuous and constructed with ph ( t a ) ω as t a along 𝒫 .

  • in which z is a large real or complex parameter, p ( α , t ) and q ( α , t ) are analytic functions of t and continuous in t and a second parameter α . … where 𝒬 is the w -map of 𝒫 , and …
    18: Bibliography L
  • O. Lehto and K. I. Virtanen (1973) Quasiconformal Mappings in the Plane. 2nd edition, Springer-Verlag, New York.
  • P. A. Lesky (1996) Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen. Z. Angew. Math. Mech. 76 (3), pp. 181–184.
  • 19: Errata
    We have also incorporated material on continuous q -Jacobi polynomials, and several new limit transitions. …
  • Chapter 18 Additions

    The following additions were made in Chapter 18:

    • Section 18.2

      In Subsection 18.2(i), Equation (18.2.1_5); the paragraph title “Orthogonality on Finite Point Sets” has been changed to “Orthogonality on Countable Sets”, and there are minor changes in the presentation of the final paragraph, including a new equation (18.2.4_5). The presentation of Subsection 18.2(iii) has changed, Equation (18.2.5_5) was added and an extra paragraph on standardizations has been included. The presentation of Subsection 18.2(iv) has changed and it has been expanded with two extra paragraphs and several new equations, (18.2.9_5), (18.2.11_1)–(18.2.11_9). Subsections 18.2(v) (with (18.2.12_5), (18.2.14)–(18.2.17)) and 18.2(vi) (with (18.2.17)–(18.2.20)) have been expanded. New subsections, 18.2(vii)18.2(xii), with Equations (18.2.21)–(18.2.46),

    • Section 18.3

      A new introduction, minor changes in the presentation, and three new paragraphs.

    • Section 18.5

      Extra details for Chebyshev polynomials, and Equations (18.5.4_5), (18.5.11_1)–(18.5.11_4), (18.5.17_5).

    • Section 18.8

      Line numbers and two extra rows were added to Table 18.8.1.

    • Section 18.9

      Subsection 18.9(i) has been expanded, and 18.9(iii) has some additional explanation. Equations (18.9.2_1), (18.9.2_2), (18.9.18_5) and Table 18.9.2 were added.

    • Section 18.12

      Three extra generating functions, (18.12.2_5), (18.12.3_5), (18.12.17).

    • Section 18.14

      Equation (18.14.3_5). New subsection, 18.14(iv), with Equations (18.14.25)–(18.14.27).

    • Section 18.15

      Equation (18.15.4_5).

    • Section 18.16

      The title of Subsection 18.16(iii) was changed from “Ultraspherical and Legendre” to “Ultraspherical, Legendre and Chebyshev”. New subsection, 18.16(vii) Discriminants, with Equations (18.16.19)–(18.16.21).

    • Section 18.17

      Extra explanatory text at many places and seven extra integrals (18.17.16_5), (18.17.21_1)–(18.17.21_3), (18.17.28_5), (18.17.34_5), (18.17.41_5).

    • Section 18.18

      Extra explanatory text at several places and the title of Subsection 18.18(iv) was changed from “Connection Formulas” to “Connection and Inversion Formulas”.

    • Section 18.19

      A new introduction.

    • Section 18.21

      Equation (18.21.13).

    • Section 18.25

      Extra explanatory text in Subsection 18.25(i) and the title of Subsection 18.25(ii) was changed from “Weights and Normalizations: Continuous Cases” to “Weights and Standardizations: Continuous Cases”.

    • Section 18.26

      In Subsection 18.26(i) an extra paragraph on dualities has been included, with Equations (18.26.4_1), (18.26.4_2).

    • Section 18.27

      Extra text at the start of this section and twenty seven extra formulas, (18.27.4_1), (18.27.4_2), (18.27.6_5), (18.27.9_5), (18.27.12_5), (18.27.14_1)–(18.27.14_6), (18.27.17_1)–(18.27.17_3), (18.27.20_5), (18.27.25), (18.27.26), (18.28.1_5).

    • Section 18.28

      A big expansion. Six extra formulas in Subsection 18.28(ii) ((18.28.6_1)–(18.28.6_5)) and three extra formulas in Subsection 18.28(viii) ((18.28.21)–(18.28.23)). New subsections, 18.28(ix)18.28(xi), with Equations (18.28.23)–(18.28.34).

    • Section 18.30

      Originally this section did not have subsections. The original seven formulas have now more explanatory text and are split over two subsections. New subsections 18.30(iii)18.30(viii), with Equations (18.30.8)–(18.30.31).

    • Section 18.32

      This short section has been expanded, with Equation (18.32.2).

    • Section 18.33

      Additional references and a new large subsection, 18.33(vi), including Equations (18.33.17)–(18.33.32).

    • Section 18.34

      This section has been expanded, including an extra orthogonality relations (18.34.5_5), (18.34.7_1)–(18.34.7_3).

    • Section 18.35

      This section on Pollaczek polynomials has been significantly updated with much more explanations and as well to include the Pollaczek polynomials of type 3 which are the most general with three free parameters. The Pollaczek polynomials which were previously treated, namely those of type 1 and type 2 are special cases of the type 3 Pollaczek polynomials. In the first paragraph of this section an extensive description of the relations between the three types of Pollaczek polynomials is given which was lacking previously. Equations (18.35.0_5), (18.35.2_1)–(18.35.2_5), (18.35.4_5), (18.35.6_1)–(18.35.6_6), (18.35.10).

    • Section 18.36

      This section on miscellaneous polynomials has been expanded with new subsections, 18.36(v) on non-classical Laguerre polynomials and 18.36(vi) with examples of exceptional orthogonal polynomials, with Equations (18.36.1)–(18.36.10). In the titles of Subsections 18.36(ii) and 18.36(iii) we replaced “OP’s” by “Orthogonal Polynomials”.

    • Section 18.38

      The paragraphs of Subsection 18.38(i) have been re-ordered and one paragraph was added. The title of Subsection 18.38(ii) was changed from “Classical OP’s: Other Applications” to “Classical OP’s: Mathematical Developments and Applications”. Subsection 18.38(iii) has been expanded with seven new paragraphs, and Equations (18.38.4)–(18.38.11).

    • Section 18.39

      This section was completely rewritten. The previous 18.39(i) Quantum Mechanics has been replaced by Subsections 18.39(i) Quantum Mechanics and 18.39(ii) A 3D Separable Quantum System, the Hydrogen Atom, containing the same essential information; the original content of the subsection is reproduced below for reference. Subsection 18.39(ii) was moved to 18.39(v) Other Applications. New subsections, 18.39(iii) Non Classical Weight Functions of Utility in DVR Method in the Physical Sciences, 18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods; Equations (18.39.7)–(18.39.48); and Figures 18.39.1, 18.39.2.

      The original text of 18.39(i) Quantum Mechanics was:

      “Classical OP’s appear when the time-dependent Schrödinger equation is solved by separation of variables. Consider, for example, the one-dimensional form of this equation for a particle of mass m with potential energy V ( x ) :

      errata.1 ( 2 2 m 2 x 2 + V ( x ) ) ψ ( x , t ) = i t ψ ( x , t ) ,

      where is the reduced Planck’s constant. On substituting ψ ( x , t ) = η ( x ) ζ ( t ) , we obtain two ordinary differential equations, each of which involve the same constant E . The equation for η ( x ) is

      errata.2 d 2 η d x 2 + 2 m 2 ( E V ( x ) ) η = 0 .

      For a harmonic oscillator, the potential energy is given by

      errata.3 V ( x ) = 1 2 m ω 2 x 2 ,

      where ω is the angular frequency. For (18.39.2) to have a nontrivial bounded solution in the interval < x < , the constant E (the total energy of the particle) must satisfy

      errata.4 E = E n = ( n + 1 2 ) ω , n = 0 , 1 , 2 , .

      The corresponding eigenfunctions are

      errata.5 η n ( x ) = π 1 4 2 1 2 n ( n ! b ) 1 2 H n ( x / b ) e x 2 / 2 b 2 ,

      where b = ( / m ω ) 1 / 2 , and H n is the Hermite polynomial. For further details, see Seaborn (1991, p. 224) or Nikiforov and Uvarov (1988, pp. 71-72).

      A second example is provided by the three-dimensional time-independent Schrödinger equation

      errata.6 2 ψ + 2 m 2 ( E V ( 𝐱 ) ) ψ = 0 ,

      when this is solved by separation of variables in spherical coordinates (§1.5(ii)). The eigenfunctions of one of the separated ordinary differential equations are Legendre polynomials. See Seaborn (1991, pp. 69-75).

      For a third example, one in which the eigenfunctions are Laguerre polynomials, see Seaborn (1991, pp. 87-93) and Nikiforov and Uvarov (1988, pp. 76-80 and 320-323).”

    • Section 18.40

      The old section is now Subsection 18.40(i) and a large new subsection, 18.40(ii), on the classical moment problem has been added, with formulae (18.40.1)–(18.40.10) and Figures 18.40.1, 18.40.2.

  • Graphics

    A software bug that had corrupted some figures, such as those in About Color Map, has been corrected.

  • References

    Entries for the Sage computational system have been updated in the Software Index.

  • Several minor improvements were made affecting display and layout; primarily tracking changes to the underlying LaTeXML system. …