About the Project

complex orthogonal polynomials

AdvancedHelp

(0.009 seconds)

11—20 of 70 matching pages

11: 31.11 Expansions in Series of Hypergeometric Functions
Series of Type II (§31.11(iv)) are expansions in orthogonal polynomials, which are useful in calculations of normalization integrals for Heun functions; see Erdélyi (1944) and §31.9(i). …
31.11.3 λ + μ = γ + δ 1 = α + β ϵ .
The case α = n for nonnegative integer n corresponds to the Heun polynomial 𝐻𝑝 n , m ( z ) . …
μ = γ + δ 2 .
In each case P j 6 can be expressed in terms of a Jacobi polynomial18.3). …
12: 18.17 Integrals
18.17.34_5 0 e x z L m ( α ) ( x ) L n ( α ) ( x ) e x x α d x = Γ ( α + m + 1 ) Γ ( α + n + 1 ) Γ ( α + 1 ) m ! n ! z m + n ( z + 1 ) α + m + n + 1 F 1 2 ( m , n α + 1 ; z 2 ) , z > 1 .
13: Bibliography H
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • E. Hendriksen and H. van Rossum (1986) Orthogonal Laurent polynomials. Nederl. Akad. Wetensch. Indag. Math. 48 (1), pp. 17–36.
  • F. T. Howard (1976) Roots of the Euler polynomials. Pacific J. Math. 64 (1), pp. 181–191.
  • I. Huang and S. Huang (1999) Bernoulli numbers and polynomials via residues. J. Number Theory 76 (2), pp. 178–193.
  • 14: Bibliography G
  • G. Gasper (1977) Positive sums of the classical orthogonal polynomials. SIAM J. Math. Anal. 8 (3), pp. 423–447.
  • W. Gautschi (1996) Orthogonal Polynomials: Applications and Computation. In Acta Numerica, 1996, A. Iserles (Ed.), Acta Numerica, Vol. 5, pp. 45–119.
  • W. Gautschi (2004) Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation, Oxford University Press, New York.
  • W. Gautschi (2009) Variable-precision recurrence coefficients for nonstandard orthogonal polynomials. Numer. Algorithms 52 (3), pp. 409–418.
  • D. Gómez-Ullate, N. Kamran, and R. Milson (2010) Exceptional orthogonal polynomials and the Darboux transformation. J. Phys. A 43 (43), pp. 43016, 16 pp..
  • 15: 3.8 Nonlinear Equations
    For the computation of zeros of orthogonal polynomials as eigenvalues of finite tridiagonal matrices (§3.5(vi)), see Gil et al. (2007a, pp. 205–207). …
    §3.8(iv) Zeros of Polynomials
    The polynomialFor further information on the computation of zeros of polynomials see McNamee (2007). …
    Example. Wilkinson’s Polynomial
    16: Bibliography P
  • A. M. Parkhurst and A. T. James (1974) Zonal Polynomials of Order 1 Through 12 . In Selected Tables in Mathematical Statistics, H. L. Harter and D. B. Owen (Eds.), Vol. 2, pp. 199–388.
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • R. Piessens and M. Branders (1972) Chebyshev polynomial expansions of the Riemann zeta function. Math. Comp. 26 (120), pp. G1–G5.
  • M. J. D. Powell (1967) On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9 (4), pp. 404–407.
  • 17: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • D. St. P. Richards (Ed.) (1992) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics, Vol. 138, American Mathematical Society, Providence, RI.
  • 18: 35.1 Special Notation
    All fractional or complex powers are principal values.
    a , b complex variables.
    𝐎 ( m ) space of orthogonal matrices.
    𝐇 orthogonal matrix.
    Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
    19: 18.30 Associated OP’s
    §18.30 Associated OP’s
    §18.30(vi) Corecursive Orthogonal Polynomials
    Numerator and Denominator Polynomials
    §18.30(vii) Corecursive and Associated Monic Orthogonal Polynomials
    20: 31.9 Orthogonality
    §31.9 Orthogonality
    §31.9(i) Single Orthogonality
    The right-hand side may be evaluated at any convenient value, or limiting value, of ζ in ( 0 , 1 ) since it is independent of ζ . For corresponding orthogonality relations for Heun functions (§31.4) and Heun polynomials31.5), see Lambe and Ward (1934), Erdélyi (1944), Sleeman (1966a), and Ronveaux (1995, Part A, pp. 59–64).
    §31.9(ii) Double Orthogonality