About the Project

buy levrie tables online 365-becom/?id=1738

AdvancedHelp

(0.063 seconds)

1—10 of 182 matching pages

1: 25.10 Zeros
More than 41% of all the zeros in the critical strip lie on the critical line (Bui et al. (2011)). …
2: Bibliography B
  • R. F. Barrett (1964) Tables of modified Struve functions of orders zero and unity.
  • S. L. Belousov (1962) Tables of Normalized Associated Legendre Polynomials. Pergamon Press, The Macmillan Co., Oxford-New York.
  • D. Bierens de Haan (1867) Nouvelles Tables d’Intégrales Définies. P. Engels, Leide.
  • D. Bierens de Haan (1939) Nouvelles Tables d’Intégrales Définies. G.E. Stechert & Co., New York.
  • H. M. Bui, B. Conrey, and M. P. Young (2011) More than 41% of the zeros of the zeta function are on the critical line. Acta Arith. 150 (1), pp. 35–64.
  • 3: List of Tables
    List of Tables
    4: How to Cite
    produces pdf with the equation and table numbers linking directly into the DLMF website: For the gamma function at positive integers, see [DLMF, (5.4.1)]; for its extrema see [DLMF, Table 5.4.1]. … The direct correspondence between the reference numbers in the printed Handbook and the permalinks used online in the DLMF enables readers of either version to cite specific items and their readers to easily look them up again — in either version! The following table outlines the correspondence between reference numbers as they appear in the Handbook, and the URL’s that find the same item online. Note the ‘E’, ‘F’ and ‘T’ used to disambiguate equations, figures and tables. …
    5: Bibliography M
  • I. G. Macdonald (1990) Hypergeometric Functions.
  • J. C. Mason and D. C. Handscomb (2003) Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton, FL.
  • G. F. Miller (1960) Tables of Generalized Exponential Integrals. NPL Mathematical Tables, Vol. III, Her Majesty’s Stationery Office, London.
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • C. Mortici (2013a) A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402 (2), pp. 405–410.
  • 6: 4.46 Tables
    §4.46 Tables
    Extensive numerical tables of all the elementary functions for real values of their arguments appear in Abramowitz and Stegun (1964, Chapter 4). This handbook also includes lists of references for earlier tables, as do Fletcher et al. (1962) and Lebedev and Fedorova (1960). …
    7: Errata
  • Subsection 25.10(ii)

    In the paragraph immediately below (25.10.4), it was originally stated that “more than one-third of all zeros in the critical strip lie on the critical line.” which referred to Levinson (1974). This sentence has been updated with “one-third” being replaced with “41%” now referring to Bui et al. (2011) (suggested by Gergő Nemes on 2021-08-23).

  • Equation (3.3.34)

    In the online version, the leading divided difference operators were previously omitted from these formulas, due to programming error.

    Reported by Nico Temme on 2021-06-01

  • Subsection 3.5(vi)

    Clarifications were made to this subsection with the addition of Equations (3.5.30_5), (3.5.33_1), (3.5.33_2), (3.5.33_3) and Table 3.5.17_5.

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • Table 18.3.1

    Special cases of normalization of Jacobi polynomials for which the general formula is undefined have been stated explicitly in Table 18.3.1.

  • 8: 26.21 Tables
    §26.21 Tables
    Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. It also contains a table of Gaussian polynomials up to [ 12 6 ] q . Goldberg et al. (1976) contains tables of binomial coefficients to n = 100 and Stirling numbers to n = 40 .
    9: Foreword
    In 1964 the National Institute of Standards and Technology11 1 Then known as the National Bureau of Standards. published the Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by Milton Abramowitz and Irene A. … The online version, the NIST Digital Library of Mathematical Functions (DLMF), presents the same technical information along with extensions and innovative interactive features consistent with the new medium. …
    10: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Biedenharn and Louck (1981) give tables of algebraic expressions for Clebsch–Gordan coefficients and 6 j symbols, together with a bibliography of tables produced prior to 1975. … 270–289; similar tables for the 6 j symbols are given on pp. …Earlier tables are listed on p. …