About the Project

as Bernoulli or Euler polynomials

AdvancedHelp

(0.008 seconds)

21—30 of 148 matching pages

21: 25.1 Special Notation
k , m , n nonnegative integers.
B n , B n ( x ) Bernoulli number and polynomial24.2(i)).
B ~ n ( x ) periodic Bernoulli function B n ( x x ) .
22: 17.3 q -Elementary and q -Special Functions
§17.3(iii) Bernoulli Polynomials; Euler and Stirling Numbers
q -Bernoulli Polynomials
17.3.7 β n ( x , q ) = ( 1 q ) 1 n r = 0 n ( 1 ) r ( n r ) r + 1 ( 1 q r + 1 ) q r x .
The β n ( x , q ) are, in fact, rational functions of q , and not necessarily polynomials. The A m , s ( q ) are always polynomials in q , and the a m , s ( q ) are polynomials in q for 0 s m . …
23: 5.11 Asymptotic Expansions
For the Bernoulli numbers B 2 k , see §24.2(i). …
5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,
where h ( ) is fixed, and B k ( h ) is the Bernoulli polynomial defined in §24.2(i). … In terms of generalized Bernoulli polynomials B n ( ) ( x ) 24.16(i)), we have for k = 0 , 1 , ,
5.11.17 G k ( a , b ) = ( a b k ) B k ( a b + 1 ) ( a ) ,
24: 25.11 Hurwitz Zeta Function
25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
25.11.7 ζ ( s , a ) = 1 a s + 1 ( 1 + a ) s ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k 1 ( 1 + a ) s + 2 k 1 ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) ( x + a ) s + 2 n + 1 d x , s 1 , a > 0 , n = 1 , 2 , 3 , , s > 2 n .
For B ~ n ( x ) see §24.2(iii). …
25.11.14 ζ ( n , a ) = B n + 1 ( a ) n + 1 , n = 0 , 1 , 2 , .
25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
25: 25.2 Definition and Expansions
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
For B 2 k see §24.2(i), and for B ~ n ( x ) see §24.2(iii). …
26: 25.6 Integer Arguments
§25.6(i) Function Values
25.6.2 ζ ( 2 n ) = ( 2 π ) 2 n 2 ( 2 n ) ! | B 2 n | , n = 1 , 2 , 3 , .
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.6 ζ ( 2 k + 1 ) = ( 1 ) k + 1 ( 2 π ) 2 k + 1 2 ( 2 k + 1 ) ! 0 1 B 2 k + 1 ( t ) cot ( π t ) d t , k = 1 , 2 , 3 , .
25.6.15 ζ ( 2 n ) = ( 1 ) n + 1 ( 2 π ) 2 n 2 ( 2 n ) ! ( 2 n ζ ( 1 2 n ) ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n ) .
27: Bibliography D
  • H. Delange (1991) Sur les zéros réels des polynômes de Bernoulli. Ann. Inst. Fourier (Grenoble) 41 (2), pp. 267–309 (French).
  • K. Dilcher (1987a) Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials. J. Approx. Theory 49 (4), pp. 321–330.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • 28: 24.10 Arithmetic Properties
    §24.10 Arithmetic Properties
    §24.10(i) Von Staudt–Clausen Theorem
    §24.10(ii) Kummer Congruences
    §24.10(iii) Voronoi’s Congruence
    §24.10(iv) Factors
    29: 2.10 Sums and Sequences
    As in §24.2, let B n and B n ( x ) denote the n th Bernoulli number and polynomial, respectively, and B ~ n ( x ) the n th Bernoulli periodic function B n ( x x ) . …
    2.10.1 j = a n f ( j ) = a n f ( x ) d x + 1 2 f ( a ) + 1 2 f ( n ) + s = 1 m 1 B 2 s ( 2 s ) ! ( f ( 2 s 1 ) ( n ) f ( 2 s 1 ) ( a ) ) + a n B 2 m B ~ 2 m ( x ) ( 2 m ) ! f ( 2 m ) ( x ) d x .
    2.10.4 S ( n ) = 1 2 n 2 ln n 1 4 n 2 + 1 2 n ln n + 1 12 ln n + C + s = 2 m 1 ( B 2 s ) 2 s ( 2 s 1 ) ( 2 s 2 ) 1 n 2 s 2 + R m ( n ) ,
    2.10.5 R m ( n ) = n B ~ 2 m ( x ) B 2 m 2 m ( 2 m 1 ) x 2 m 1 d x .
    From §24.12(i), (24.2.2), and (24.4.27), B ~ 2 m ( x ) B 2 m is of constant sign ( 1 ) m . …
    30: 25.16 Mathematical Applications
    25.16.6 H ( s ) = ζ ( s ) + γ ζ ( s ) + 1 2 ζ ( s + 1 ) + r = 1 k ζ ( 1 2 r ) ζ ( s + 2 r ) + n = 1 1 n s n B ~ 2 k + 1 ( x ) x 2 k + 2 d x ,
    25.16.7 H ( s ) = 1 2 ζ ( s + 1 ) + ζ ( s ) s 1 r = 1 k ( s + 2 r 2 2 r 1 ) ζ ( 1 2 r ) ζ ( s + 2 r ) ( s + 2 k 2 k + 1 ) n = 1 1 n n B ~ 2 k + 1 ( x ) x s + 2 k + 1 d x .
    25.16.10 H ( 2 a ) = 1 2 ζ ( 1 2 a ) = B 2 a 4 a , a = 1 , 2 , 3 , .
    H ( s ) has a simple pole with residue ζ ( 1 2 r ) ( = B 2 r / ( 2 r ) ) at each odd negative integer s = 1 2 r , r = 1 , 2 , 3 , . …