About the Project

Weber–Schafheitlin discontinuous integrals

AdvancedHelp

(0.002 seconds)

31—40 of 455 matching pages

31: Bibliography S
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • H. Shanker (1940b) On certain integrals and expansions involving Weber’s parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 158–166.
  • I. Shavitt and M. Karplus (1965) Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43 (2), pp. 398–414.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • R. Sips (1970) Quelques intégrales définies discontinues contenant des fonctions de Mathieu. Acad. Roy. Belg. Bull. Cl. Sci. (5) 56 (5), pp. 475–491 (French).
  • 32: 2.8 Differential Equations with a Parameter
    For J ν and Y ν see §10.2(ii). … Define … Corresponding to the problems for integrals outlined in §§2.3(v), 2.4(v), and 2.4(vi), there are analogous problems for differential equations. …
    33: Bibliography N
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • 34: 11.9 Lommel Functions
    11.9.5 S μ , ν ( z ) = s μ , ν ( z ) + 2 μ 1 Γ ( 1 2 μ + 1 2 ν + 1 2 ) Γ ( 1 2 μ 1 2 ν + 1 2 ) ( sin ( 1 2 ( μ ν ) π ) J ν ( z ) cos ( 1 2 ( μ ν ) π ) Y ν ( z ) ) ,
    For collections of integral representations and integrals see Apelblat (1983, §12.17), Babister (1967, p. 85), Erdélyi et al. (1954a, §§4.19 and 5.17), Gradshteyn and Ryzhik (2000, §6.86), Marichev (1983, p. 193), Oberhettinger (1972, pp. 127–128, 168–169, and 188–189), Oberhettinger (1974, §§1.12 and 2.7), Oberhettinger (1990, pp. 105–106 and 191–192), Oberhettinger and Badii (1973, §2.14), Prudnikov et al. (1990, §§1.6 and 2.9), Prudnikov et al. (1992a, §3.34), and Prudnikov et al. (1992b, §3.32).
    35: Bibliography B
  • G. E. Barr (1968) A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 16 (1), pp. 71–74.
  • W. Bartky (1938) Numerical calculation of a generalized complete elliptic integral. Rev. Mod. Phys. 10, pp. 264–269.
  • G. D. Bernard and A. Ishimaru (1962) Tables of the Anger and Lommel-Weber Functions. Technical report Technical Report 53 and AFCRL 796, University Washington Press, Seattle.
  • M. V. Berry (1989) Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. Roy. Soc. London Ser. A 422, pp. 7–21.
  • P. J. Bushell (1987) On a generalization of Barton’s integral and related integrals of complete elliptic integrals. Math. Proc. Cambridge Philos. Soc. 101 (1), pp. 1–5.
  • 36: 10.8 Power Series
    When ν is not an integer the corresponding expansions for Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8). …
    10.8.1 Y n ( z ) = ( 1 2 z ) n π k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + 2 π ln ( 1 2 z ) J n ( z ) ( 1 2 z ) n π k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
    10.8.2 Y 0 ( z ) = 2 π ( ln ( 1 2 z ) + γ ) J 0 ( z ) + 2 π ( 1 4 z 2 ( 1 ! ) 2 ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 ) ,
    37: Bibliography Z
  • R. Zanovello (1977) Integrali di funzioni di Anger, Weber ed Airy-Hardy. Rend. Sem. Mat. Univ. Padova 58, pp. 275–285 (Italian).
  • R. Zanovello (1978) Su un integrale definito del prodotto di due funzioni di Struve. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 112 (1-2), pp. 63–81 (Italian).
  • D. G. Zill and B. C. Carlson (1970) Symmetric elliptic integrals of the third kind. Math. Comp. 24 (109), pp. 199–214.
  • 38: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Often circumstances allow rather stronger statements, such as uniform convergence, or pointwise convergence at points where f ( x ) is continuous, with convergence to ( f ( x 0 ) + f ( x 0 + ) ) / 2 if x 0 is an isolated point of discontinuity. … where the integral kernel is given by … This is the discontinuity across the branch cut in (1.18.52) 𝝈 c , from z below to above the cut, divided by 2 π i . … For generalizations see the Weber transform (10.22.78) and an extended Bessel transform (10.22.79). … This representation has poles with residues | f ^ ( λ n ) | 2 at the discrete eigenvalues and a branch cut along [ 0 , ) with discontinuity, from below to above the cut, 2 π i | f ^ ( λ ) | 2 , as in (1.18.53), see Newton (2002, §7.1.1). …
    39: Software Index
    40: Guide to Searching the DLMF
    Table 1: Query Examples
    Query Matching records contain
    int sin the integral of the sin function
    int_$^$ sin any definite integral of sin
    BesselJ_nu and BesselY_nu both the Bessel functions J ν and Y ν .
    int adj sin immediately followed by sin without any intervening terms.
    Table 2: Wildcard Examples
    Query What it stands for
    int_$^$ sin any definite integral of sin.