About the Project

Mellin%E2%80%93Barnes%20type

AdvancedHelp

(0.002 seconds)

11—20 of 209 matching pages

11: 12.5 Integral Representations
§12.5(iii) MellinBarnes Integrals
12.5.8 U ( a , z ) = e 1 4 z 2 z a 1 2 2 π i Γ ( 1 2 + a ) i i Γ ( t ) Γ ( 1 2 + a 2 t ) 2 t z 2 t d t , a 1 2 , 3 2 , 5 2 , , | ph z | < 3 4 π ,
12.5.9 V ( a , z ) = 2 π e 1 4 z 2 z a 1 2 2 π i Γ ( 1 2 a ) i i Γ ( t ) Γ ( 1 2 a 2 t ) 2 t z 2 t cos ( π t ) d t , a 1 2 , 3 2 , 5 2 , , | ph z | < 1 4 π ,
12: 16.15 Integral Representations and Integrals
16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
16.15.3 F 3 ( α , α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β β ) Δ u β 1 v β 1 ( 1 u v ) γ β β 1 ( 1 u x ) α ( 1 v y ) α d u d v , ( γ β β ) > 0 , β > 0 , β > 0 ,
16.15.4 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = Γ ( γ ) Γ ( γ ) Γ ( α ) Γ ( β ) Γ ( γ α ) Γ ( γ β ) 0 1 0 1 u α 1 v β 1 ( 1 u ) γ α 1 ( 1 v ) γ β 1 ( 1 u x ) γ + γ α 1 ( 1 v y ) γ + γ β 1 ( 1 u x v y ) α + β γ γ + 1 d u d v , γ > α > 0 , γ > β > 0 .
For these and other formulas, including double MellinBarnes integrals, see Erdélyi et al. (1953a, §5.8). …
13: 7.7 Integral Representations
Integrals of the type e z 2 R ( z ) d z , where R ( z ) is an arbitrary rational function, can be written in closed form in terms of the error functions and elementary functions. …
MellinBarnes Integrals
7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .
14: 2.3 Integrals of a Real Variable
Other types of singular behavior in the integrand can be treated in an analogous manner. …
2.3.12 0 f ( x t ) q ( t ) d t s = 0 f ( s + λ μ ) a s x ( s + λ ) / μ , x + ,
where f ( α ) is the Mellin transform of f ( t ) 2.5(i)). …
§2.3(vi) Asymptotics of Mellin Transforms
For the asymptotics of the Mellin transform f ( z ) = 0 t z 1 f ( t ) d t as z see Frenzen (1987b), Sidi (1985, 2011).
15: 13.16 Integral Representations
§13.16(iii) MellinBarnes Integrals
13.16.10 1 Γ ( 1 + 2 μ ) M κ , μ ( e ± π i z ) = e 1 2 z ± ( 1 2 + μ ) π i 2 π i Γ ( 1 2 + μ κ ) i i Γ ( t κ ) Γ ( 1 2 + μ t ) Γ ( 1 2 + μ + t ) z t d t , | ph z | < 1 2 π ,
13.16.11 W κ , μ ( z ) = e 1 2 z 2 π i i i Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) Γ ( κ t ) Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) z t d t , | ph z | < 3 2 π ,
13.16.12 W κ , μ ( z ) = e 1 2 z 2 π i i i Γ ( 1 2 + μ + t ) Γ ( 1 2 μ + t ) Γ ( 1 κ + t ) z t d t , | ph z | < 1 2 π ,
16: 11.5 Integral Representations
MellinBarnes Integrals
11.5.8 ( 1 2 x ) ν 1 𝐇 ν ( x ) = 1 2 π i i i π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 x 2 ) s d s , x > 0 , ν > 1 ,
11.5.9 ( 1 2 z ) ν 1 𝐋 ν ( z ) = 1 2 π i ( 0 + ) π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 z 2 ) s d s .
17: 13.4 Integral Representations
§13.4(iii) MellinBarnes Integrals
13.4.16 𝐌 ( a , b , z ) = 1 2 π i Γ ( a ) i i Γ ( a + t ) Γ ( t ) Γ ( b + t ) z t d t , | ph z | < 1 2 π ,
13.4.17 U ( a , b , z ) = z a 2 π i i i Γ ( a + t ) Γ ( 1 + a b + t ) Γ ( t ) Γ ( a ) Γ ( 1 + a b ) z t d t , | ph z | < 3 2 π ,
13.4.18 U ( a , b , z ) = z 1 b e z 2 π i i i Γ ( b 1 + t ) Γ ( t ) Γ ( a + t ) z t d t , | ph z | < 1 2 π ,
18: 8.19 Generalized Exponential Integral
8.19.2 E p ( z ) = z p 1 z e t t p d t .
8.19.4 E p ( z ) = z p 1 e z Γ ( p ) 0 t p 1 e z t 1 + t d t , | ph z | < 1 2 π , p > 0 .
Integral representations of MellinBarnes type for E p ( z ) follow immediately from (8.6.11), (8.6.12), and (8.19.1). …
19: 14.17 Integrals
§14.17(ii) Barnes’ Integral
§14.17(vi) Mellin Transforms
For Mellin transforms involving associated Legendre functions see Oberhettinger (1974, pp. 69–82) and Marichev (1983, pp. 247–283), and for inverse transforms see Oberhettinger (1974, pp. 205–215).
20: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(v) MellinBarnes Integrals
Multidimensional MellinBarnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …These multidimensional integrals reduce to the classical MellinBarnes integrals (§5.19(ii)) in the special case m = 1 . …