About the Project

Jacobi theta functions

AdvancedHelp

(0.010 seconds)

31—40 of 45 matching pages

31: 31.16 Mathematical Applications
32: Errata
  • Equation (22.19.2)
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) )

    Originally the first argument to the function sn was given incorrectly as t . The correct argument is t + K .

    Reported 2014-03-05 by Svante Janson.

  • Equation (22.19.3)
    22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E )

    Originally the first argument to the function am was given incorrectly as t . The correct argument is t E / 2 .

    Reported 2014-03-05 by Svante Janson.

  • 33: Bibliography M
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • D. Mumford (1983) Tata Lectures on Theta. I. Birkhäuser Boston Inc., Boston, MA.
  • D. Mumford (1984) Tata Lectures on Theta. II. Birkhäuser Boston Inc., Boston, MA.
  • 34: 19.25 Relations to Other Functions
    §19.25(iv) Theta Functions
    For relations of symmetric integrals to theta functions, see §20.9(i). … If cs 2 ( u , k ) 0 , then …where we assume 0 x 2 1 if x = sn , cn , or cd ; x 2 1 if x = ns , nc , or dc ; x real if x = cs or sc ; k x 1 if x = dn ; 1 x 1 / k if x = nd ; x 2 k 2 if x = ds ; 0 x 2 1 / k 2 if x = sd . …
    35: 18.18 Sums
    18.18.9 P n ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = P n ( cos θ 1 ) P n ( cos θ 2 ) + 2 = 1 n ( n ) ! ( n + ) ! 2 2 ( n ! ) 2 ( sin θ 1 ) P n ( , ) ( cos θ 1 ) ( sin θ 2 ) P n ( , ) ( cos θ 2 ) cos ( ϕ ) .
    36: 31.2 Differential Equations
    31.2.5 z = sin 2 θ ,
    31.2.6 d 2 w d θ 2 + ( ( 2 γ 1 ) cot θ ( 2 δ 1 ) tan θ ϵ sin ( 2 θ ) a sin 2 θ ) d w d θ + 4 α β sin 2 θ q a sin 2 θ w = 0 .
    Jacobi’s Elliptic Form
    z = sn 2 ( ζ , k ) .
    31.2.8 d 2 w d ζ 2 + ( ( 2 γ 1 ) cn ζ dn ζ sn ζ ( 2 δ 1 ) sn ζ dn ζ cn ζ ( 2 ϵ 1 ) k 2 sn ζ cn ζ dn ζ ) d w d ζ + 4 k 2 ( α β sn 2 ζ q ) w = 0 .
    37: 18.17 Integrals
    Jacobi
    Jacobi
    Jacobi
    Jacobi
    Jacobi
    38: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • P. Baratella and L. Gatteschi (1988) The Bounds for the Error Term of an Asymptotic Approximation of Jacobi Polynomials. In Orthogonal Polynomials and Their Applications (Segovia, 1986), Lecture Notes in Math., Vol. 1329, pp. 203–221.
  • R. Bellman (1961) A Brief Introduction to Theta Functions. Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York.
  • J. M. Borwein and P. B. Borwein (1991) A cubic counterpart of Jacobi’s identity and the AGM. Trans. Amer. Math. Soc. 323 (2), pp. 691–701.
  • 39: 18.12 Generating Functions
    §18.12 Generating Functions
    The z -radii of convergence will depend on x , and in first instance we will assume x [ 1 , 1 ] for Jacobi, ultraspherical, Chebyshev and Legendre, x [ 0 , ) for Laguerre, and x for Hermite. …
    Jacobi
    Ultraspherical
    Legendre
    40: 15.9 Relations to Other Functions
    Jacobi
    §15.9(ii) Jacobi Function
    The Jacobi transform is defined as …with inverse … …