About the Project

Gauss%E2%80%93Laguerre%20formula

AdvancedHelp

(0.003 seconds)

11—20 of 391 matching pages

11: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(iii) F 2 3 Case
Kummer Transformation
Pfaff–Saalschütz Formula
Thomae Transformation
Multidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …
12: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • 13: Bibliography
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I ν ( x ) and J ν ( x ) , x 0 , ν 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews, R. Askey, and R. Roy (1999) Special Functions. Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 14: 15.9 Relations to Other Functions
    The following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
    15: 31.7 Relations to Other Functions
    §31.7(i) Reductions to the Gauss Hypergeometric Function
    Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
    31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
    31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
    Similar specializations of formulas in §31.3(ii) yield solutions in the neighborhoods of the singularities ζ = K , K + i K , and i K , where K and K are related to k as in §19.2(ii).
    16: 20.11 Generalizations and Analogs
    §20.11(i) Gauss Sum
    For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by … … Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …
    17: 16.8 Differential Equations
    the function w = F q p ( 𝐚 ; 𝐛 ; z ) satisfies the differential equation …
    w 0 ( z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) ,
    We have the connection formulaAnalytical continuation formulas for F q q + 1 ( 𝐚 ; 𝐛 ; z ) near z = 1 are given in Bühring (1987b) for the case q = 2 , and in Bühring (1992) for the general case. …
    18: 18.20 Hahn Class: Explicit Representations
    §18.20(i) Rodrigues Formulas
    18.20.6 K n ( x ; p , N ) = F 1 2 ( n , x N ; p 1 ) , n = 0 , 1 , , N .
    18.20.7 M n ( x ; β , c ) = F 1 2 ( n , x β ; 1 c 1 ) .
    19: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    Gauss Formula
    Reflection Formula
    Subject to the conditions (a)–(c), the function f ( 𝐓 ) = F 1 2 ( a , b ; c ; 𝐓 ) is the unique solution of each partial differential equation … Systems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). …
    20: 35.6 Confluent Hypergeometric Functions of Matrix Argument
    Laguerre Form
    35.6.3 L ν ( γ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 1 ( ν γ + 1 2 ( m + 1 ) ; 𝐓 ) , ( γ ) , ( γ + ν ) > 1 .
    35.6.6 B m ( b 1 , b 2 ) | 𝐓 | b 1 + b 2 1 2 ( m + 1 ) F 1 1 ( a 1 + a 2 b 1 + b 2 ; 𝐓 ) = 𝟎 < 𝐗 < 𝐓 | 𝐗 | b 1 1 2 ( m + 1 ) F 1 1 ( a 1 b 1 ; 𝐗 ) | 𝐓 𝐗 | b 2 1 2 ( m + 1 ) F 1 1 ( a 2 b 2 ; 𝐓 𝐗 ) d 𝐗 , ( b 1 ) , ( b 2 ) > 1 2 ( m 1 ) .