About the Project

Gauss%E2%80%93Jacobi%20formula

AdvancedHelp

(0.003 seconds)

11—20 of 435 matching pages

11: 15.9 Relations to Other Functions
β–Ί
Jacobi
β–Ί
§15.9(ii) Jacobi Function
β–ΊThe Jacobi transform is defined as …with inverse … …
12: 16.4 Argument Unity
β–ΊThe function F q q + 1 ⁑ ( 𝐚 ; 𝐛 ; z ) is well-poised if … β–ΊThe function F q q + 1 with argument unity and general values of the parameters is discussed in Bühring (1992). … β–ΊFor generalizations involving F r + 2 r + 3 functions see Kim et al. (2013). … β–ΊBalanced F 3 4 ⁑ ( 1 ) series have transformation formulas and three-term relations. … β–ΊTransformations for both balanced F 3 4 ⁑ ( 1 ) and very well-poised F 6 7 ⁑ ( 1 ) are included in Bailey (1964, pp. 56–63). …
13: 35.8 Generalized Hypergeometric Functions of Matrix Argument
β–Ί
§35.8(iii) F 2 3 Case
β–Ί
Kummer Transformation
β–Ί
Pfaff–Saalschütz Formula
β–Ί
Thomae Transformation
β–ΊMultidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …
14: Bibliography K
β–Ί
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B ⁒ C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • β–Ί
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • β–Ί
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • β–Ί
  • T. H. Koornwinder (1974) Jacobi polynomials. II. An analytic proof of the product formula. SIAM J. Math. Anal. 5, pp. 125–137.
  • β–Ί
  • T. H. Koornwinder (1975b) Jacobi polynomials. III. An analytic proof of the addition formula. SIAM. J. Math. Anal. 6, pp. 533–543.
  • 15: 3.5 Quadrature
    β–Ί
    §3.5(v) Gauss Quadrature
    β–Ί
    Gauss–Legendre Formula
    β–Ί
    Gauss–Chebyshev Formula
    β–Ί
    GaussJacobi Formula
    β–Ί
    Gauss–Laguerre Formula
    16: Bibliography
    β–Ί
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, Ο€ , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • β–Ί
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I Ξ½ ⁒ ( x ) and J Ξ½ ⁒ ( x ) , x 0 , Ξ½ 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • β–Ί
  • G. E. Andrews, R. Askey, and R. Roy (1999) Special Functions. Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
  • β–Ί
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 17: 31.7 Relations to Other Functions
    β–Ί
    §31.7(i) Reductions to the Gauss Hypergeometric Function
    β–ΊOther reductions of H ⁒ β„“ to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = Ξ± ⁒ Ξ² ⁒ p . … β–Ί
    31.7.2 H ⁒ β„“ ⁑ ( 2 , Ξ± ⁒ Ξ² ; Ξ± , Ξ² , Ξ³ , Ξ± + Ξ² 2 ⁒ Ξ³ + 1 ; z ) = F 1 2 ⁑ ( 1 2 ⁒ Ξ± , 1 2 ⁒ Ξ² ; Ξ³ ; 1 ( 1 z ) 2 ) ,
    β–ΊWith z = sn 2 ⁑ ( ΞΆ , k ) and …Similar specializations of formulas in §31.3(ii) yield solutions in the neighborhoods of the singularities ΞΆ = K ⁑ , K ⁑ + i ⁒ K ⁑ , and i ⁒ K ⁑ , where K ⁑ and K ⁑ are related to k as in §19.2(ii).
    18: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    β–Ί
    Jacobi Form
    β–Ί
    Gauss Formula
    β–Ί
    Reflection Formula
    β–ΊSubject to the conditions (a)–(c), the function f ⁑ ( 𝐓 ) = F 1 2 ⁑ ( a , b ; c ; 𝐓 ) is the unique solution of each partial differential equation … β–ΊSystems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). …
    19: 16.8 Differential Equations
    β–Ίthe function w = F q p ⁑ ( 𝐚 ; 𝐛 ; z ) satisfies the differential equation … β–Ί
    w 0 ⁑ ( z ) = F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) ,
    β–ΊWe have the connection formulaβ–ΊAnalytical continuation formulas for F q q + 1 ⁑ ( 𝐚 ; 𝐛 ; z ) near z = 1 are given in Bühring (1987b) for the case q = 2 , and in Bühring (1992) for the general case. … β–Ί
    20: 18.20 Hahn Class: Explicit Representations
    β–Ί
    §18.20(i) Rodrigues Formulas
    β–Ί β–Ί
    18.20.6 K n ⁑ ( x ; p , N ) = F 1 2 ⁑ ( n , x N ; p 1 ) , n = 0 , 1 , , N .
    β–Ί
    18.20.7 M n ⁑ ( x ; β , c ) = F 1 2 ⁑ ( n , x β ; 1 c 1 ) .
    β–Ί