About the Project

Fermi%E2%80%93Dirac%20integrals

AdvancedHelp

(0.004 seconds)

11—20 of 481 matching pages

11: 25.21 Software
§25.21(vi) Clausen’s Integral
§25.21(vii) FermiDirac and Bose–Einstein Integrals
12: 7.18 Repeated Integrals of the Complementary Error Function
§7.18 Repeated Integrals of the Complementary Error Function
§7.18(i) Definition
§7.18(iii) Properties
Hermite Polynomials
13: 19.16 Definitions
§19.16(i) Symmetric Integrals
All other elliptic cases are integrals of the second kind. …(Note that R C ( x , y ) is not an elliptic integral.) … Each of the four complete integrals (19.16.20)–(19.16.23) can be integrated to recover the incomplete integral: …
14: Bibliography P
  • S. Paszkowski (1988) Evaluation of Fermi-Dirac Integral. In Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), A. Cuyt (Ed.), Mathematics and Its Applications, Vol. 43, pp. 435–444.
  • S. Paszkowski (1991) Evaluation of the Fermi-Dirac integral of half-integer order. Zastos. Mat. 21 (2), pp. 289–301.
  • B. Pichon (1989) Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Comm. 55 (2), pp. 127–136.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • T. Prellberg and A. L. Owczarek (1995) Stacking models of vesicles and compact clusters. J. Statist. Phys. 80 (3–4), pp. 755–779.
  • 15: Bibliography T
  • G. ’t Hooft and M. Veltman (1979) Scalar one-loop integrals. Nuclear Phys. B 153 (3-4), pp. 365–401.
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme and A. B. Olde Daalhuis (1990) Uniform asymptotic approximation of Fermi-Dirac integrals. J. Comput. Appl. Math. 31 (3), pp. 383–387.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • 16: Bibliography
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I ν ( x ) and J ν ( x ) , x 0 , ν 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews, R. Askey, and R. Roy (1999) Special Functions. Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, Cambridge.
  • H. M. Antia (1993) Rational function approximations for Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 84, pp. 101–108.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 17: Bibliography D
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • R. B. Dingle (1957b) The Fermi-Dirac integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η + 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 225–239.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 18: 36.2 Catastrophes and Canonical Integrals
    §36.2 Catastrophes and Canonical Integrals
    §36.2(i) Definitions
    Canonical Integrals
    §36.2(iii) Symmetries
    19: Bibliography G
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • M. Goano (1995) Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral. ACM Trans. Math. Software 21 (3), pp. 221–232.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 20: Bibliography N
  • A. Natarajan and N. Mohankumar (1993) On the numerical evaluation of the generalised Fermi-Dirac integrals. Comput. Phys. Comm. 76 (1), pp. 48–50.
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.