About the Project

Dirac equation

AdvancedHelp

(0.001 seconds)

11—20 of 27 matching pages

11: 1.4 Calculus of One Variable
1.4.23_1 α ( d ) α ( c ) = c d w ( x ) d x , [ c , d ] I .
1.4.23_2 a b f ( x ) d α ( x ) = a b f ( x ) w ( x ) d x , f integrable with respect to d α .
If, for example, α ( x ) = H ( x x n ) , the Heaviside unit step-function (1.16.14), then the corresponding measure d α ( x ) is δ ( x x n ) d x , where δ ( x x n ) is the Dirac δ -function of §1.17, such that, for f ( x ) a continuous function on ( a , b ) , a b f ( x ) d α ( x ) = f ( x n ) for x n ( a , b ) and 0 otherwise. Delta distributions and Dirac δ -functions are discussed in §§1.16(iii), 1.16(iv) and 1.17. … Let d α ( x ) = w ( x ) d x + n = 1 N w n δ ( x x n ) d x , x n ( a , b ) , n = 1 , N . …
12: 33.14 Definitions and Basic Properties
§33.14(i) Coulomb Wave Equation
The function s ( ϵ , ; r ) has the following properties:
33.14.13 0 s ( ϵ 1 , ; r ) s ( ϵ 2 , ; r ) d r = δ ( ϵ 1 ϵ 2 ) , ϵ 1 , ϵ 2 > 0 ,
where the right-hand side is the Dirac delta (§1.17). …
33.14.15 0 ϕ m , ( r ) ϕ n , ( r ) d r = δ m , n .
13: Bibliography C
  • R. Campbell (1955) Théorie Générale de L’Équation de Mathieu et de quelques autres Équations différentielles de la mécanique. Masson et Cie, Paris (French).
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • E. A. Coddington and N. Levinson (1955) Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • 14: 20.13 Physical Applications
    The functions θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation …with κ = i π / 4 . … is also a solution of (20.13.2), and it approaches a Dirac delta (§1.17) at t = 0 . …Theta-function solutions to the heat diffusion equation with simple boundary conditions are discussed in Lawden (1989, pp. 1–3), and with more general boundary conditions in Körner (1989, pp. 274–281). … This allows analytic time propagation of quantum wave-packets in a box, or on a ring, as closed-form solutions of the time-dependent Schrödinger equation.
    15: Bibliography G
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • W. Gautschi (1997b) The Computation of Special Functions by Linear Difference Equations. In Advances in Difference Equations (Veszprém, 1995), S. Elaydi, I. Győri, and G. Ladas (Eds.), pp. 213–243.
  • M. Goano (1995) Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral. ACM Trans. Math. Software 21 (3), pp. 221–232.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • 16: 10.22 Integrals
    10.22.37 0 1 t J ν ( j ν , t ) J ν ( j ν , m t ) d t = 1 2 ( J ν ( j ν , ) ) 2 δ , m ,
    10.22.38 0 1 t J ν ( α t ) J ν ( α m t ) d t = ( a 2 b 2 + α 2 ν 2 ) ( J ν ( α ) ) 2 2 α 2 δ , m ,
    Equation (10.22.70) also remains valid if the order ν + 1 of the J functions on both sides is replaced by ν + 2 n 3 , n = 1 , 2 , , and the constraint ν > 3 2 is replaced by ν > n + 1 2 . See also §1.17(ii) for an integral representation of the Dirac delta in terms of a product of Bessel functions. …
    10.22.79 f ( x ) = 0 ( x t ) 1 2 c J ν ( x t ) + t 2 ν J ν ( x t ) c 2 + 2 c cos ( ν π ) t 2 ν + t 4 ν 0 ( y t ) 1 2 ( c J ν ( y t ) + t 2 ν J ν ( y t ) ) f ( y ) d y d t , 0 < ν < 1 , c > 0 .
    17: Bibliography F
  • M. V. Fedoryuk (1989) The Lamé wave equation. Uspekhi Mat. Nauk 44 (1(265)), pp. 123–144, 248 (Russian).
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • A. S. Fokas, B. Grammaticos, and A. Ramani (1993) From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180 (2), pp. 342–360.
  • T. Fort (1948) Finite Differences and Difference Equations in the Real Domain. Clarendon Press, Oxford.
  • L. W. Fullerton and G. A. Rinker (1986) Generalized Fermi-Dirac integrals—FD, FDG, FDH. Comput. Phys. Comm. 39 (2), pp. 181–185.
  • 18: Bibliography M
  • A. J. MacLeod (1998) Algorithm 779: Fermi-Dirac functions of order 1 / 2 , 1 / 2 , 3 / 2 , 5 / 2 . ACM Trans. Math. Software 24 (1), pp. 1–12.
  • R. S. Maier (2005) On reducing the Heun equation to the hypergeometric equation. J. Differential Equations 213 (1), pp. 171–203.
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • N. Mohankumar and A. Natarajan (1997) The accurate evaluation of a particular Fermi-Dirac integral. Comput. Phys. Comm. 101 (1-2), pp. 47–53.
  • 19: Bibliography N
  • A. Nakamura (1996) Toda equation and its solutions in special functions. J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
  • A. Natarajan and N. Mohankumar (1993) On the numerical evaluation of the generalised Fermi-Dirac integrals. Comput. Phys. Comm. 76 (1), pp. 48–50.
  • J. Negro, L. M. Nieto, and O. Rosas-Ortiz (2000) Confluent hypergeometric equations and related solvable potentials in quantum mechanics. J. Math. Phys. 41 (12), pp. 7964–7996.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • M. Newman (1967) Solving equations exactly. J. Res. Nat. Bur. Standards Sect. B 71B, pp. 171–179.
  • 20: 14.30 Spherical and Spheroidal Harmonics
    For a series representation of the product of two Dirac deltas in terms of products of spherical harmonics see §1.17(iii). … As an example, Laplace’s equation 2 W = 0 in spherical coordinates (§1.5(ii)): … In the quantization of angular momentum the spherical harmonics Y l , m ( θ , ϕ ) are normalized solutions of the eigenvalue equations
    14.30.11_5 L z Y l , m = m Y l , m , m = l , 1 + 1 , , 0 , , l 1 , l ,
    14.30.13 L z = i ϕ ;