About the Project

Cash App Wallet Phone%E2%98%8E%EF%B8%8F%2B1%28888%E2%80%92481%E2%80%924477%29%E2%98%8E%EF%B8%8F %22Number%22

AdvancedHelp

(0.016 seconds)

21—30 of 859 matching pages

21: Bibliography S
  • F. W. Schäfke and D. Schmidt (1966) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III. Numer. Math. 8 (1), pp. 68–71.
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • R. Shail (1978) Lamé polynomial solutions to some elliptic crack and punch problems. Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
  • A. Sidi (2004) Euler-Maclaurin expansions for integrals with endpoint singularities: A new perspective. Numer. Math. 98 (2), pp. 371–387.
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • 22: Bibliography I
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • M. E. H. Ismail (2000a) An electrostatics model for zeros of general orthogonal polynomials. Pacific J. Math. 193 (2), pp. 355–369.
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • 23: 11.10 Anger–Weber Functions
    The Anger function 𝐉 ν ( z ) and Weber function 𝐄 ν ( z ) are defined by …
    See accompanying text
    Figure 11.10.1: Anger function 𝐉 ν ( x ) for 8 x 8 and ν = 0 , 1 2 , 1 , 3 2 . Magnify
    See accompanying text
    Figure 11.10.2: Weber function 𝐄 ν ( x ) for 8 x 8 and ν = 0 , 1 2 , 1 , 3 2 . Magnify
    𝐄 ν ( z ) = 𝐄 ν ( z ) .
    For n = 1 , 2 , 3 , , …
    24: 24.11 Asymptotic Approximations
    §24.11 Asymptotic Approximations
    24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
    24.11.3 ( 1 ) n E 2 n 2 2 n + 2 ( 2 n ) ! π 2 n + 1 ,
    24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
    24.11.6 ( 1 ) ( n + 1 ) / 2 π n + 1 4 ( n ! ) E n ( x ) { sin ( π x ) , n  even , cos ( π x ) , n  odd ,
    25: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • L. C. Biedenharn and J. D. Louck (1981) Angular Momentum in Quantum Physics: Theory and Application. Encyclopedia of Mathematics and its Applications, Vol. 8, Addison-Wesley Publishing Co., Reading, M.A..
  • R. Bo and R. Wong (1999) A uniform asymptotic formula for orthogonal polynomials associated with exp ( x 4 ) . J. Approx. Theory 98, pp. 146–166.
  • W. Börsch-Supan (1960) Algorithm 21: Bessel function for a set of integer orders. Comm. ACM 3 (11), pp. 600.
  • 26: 19.1 Special Notation
    In Abramowitz and Stegun (1964, Chapter 17) the functions (19.1.1) and (19.1.2) are denoted, in order, by K ( α ) , E ( α ) , Π ( n \ α ) , F ( ϕ \ α ) , E ( ϕ \ α ) , and Π ( n ; ϕ \ α ) , where α = arcsin k and n is the α 2 (not related to k ) in (19.1.1) and (19.1.2). Also, frequently in this reference α is replaced by m and \ α by | m , where m = k 2 . However, it should be noted that in Chapter 8 of Abramowitz and Stegun (1964) the notation used for elliptic integrals differs from Chapter 17 and is consistent with that used in the present chapter and the rest of the NIST Handbook and DLMF. … R F ( x , y , z ) , R G ( x , y , z ) , and R J ( x , y , z , p ) are the symmetric (in x , y , and z ) integrals of the first, second, and third kinds; they are complete if exactly one of x , y , and z is identically 0. R a ( b 1 , b 2 , , b n ; z 1 , z 2 , , z n ) is a multivariate hypergeometric function that includes all the functions in (19.1.3). …
    27: 8.27 Approximations
  • DiDonato (1978) gives a simple approximation for the function F ( p , x ) = x p e x 2 / 2 x e t 2 / 2 t p d t (which is related to the incomplete gamma function by a change of variables) for real p and large positive x . This takes the form F ( p , x ) = 4 x / h ( p , x ) , approximately, where h ( p , x ) = 3 ( x 2 p ) + ( x 2 p ) 2 + 8 ( x 2 + p ) and is shown to produce an absolute error O ( x 7 ) as x .

  • Luke (1975, p. 103) gives Chebyshev-series expansions for E 1 ( x ) and related functions for x 5 .

  • Luke (1975, p. 106) gives rational and Padé approximations, with remainders, for E 1 ( z ) and z 1 0 z t 1 ( 1 e t ) d t for complex z with | ph z | π .

  • Verbeeck (1970) gives polynomial and rational approximations for E p ( x ) = ( e x / x ) P ( z ) , approximately, where P ( z ) denotes a quotient of polynomials of equal degree in z = x 1 .

  • 28: Bibliography N
  • D. Naylor (1996) On an asymptotic expansion of the Kontorovich-Lebedev transform. Methods Appl. Anal. 3 (1), pp. 98–108.
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • G. Nemes (2020) An extension of Laplace’s method. Constr. Approx. 51 (2), pp. 247–272.
  • E. Neuman (2003) Bounds for symmetric elliptic integrals. J. Approx. Theory 122 (2), pp. 249–259.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • 29: 19.9 Inequalities
    Further inequalities for K ( k ) and E ( k ) can be found in Alzer and Qiu (2004), Anderson et al. (1992a, b, 1997), and Qiu and Vamanamurthy (1996). … Sharper inequalities for F ( ϕ , k ) are: …(19.9.15) is useful when k 2 and sin 2 ϕ are both close to 1 , since the bounds are then nearly equal; otherwise (19.9.14) is preferable. Inequalities for both F ( ϕ , k ) and E ( ϕ , k ) involving inverse circular or inverse hyperbolic functions are given in Carlson (1961b, §4). … Other inequalities for F ( ϕ , k ) can be obtained from inequalities for R F ( x , y , z ) given in Carlson (1966, (2.15)) and Carlson (1970) via (19.25.5).
    30: Bibliography H
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.