About the Project

Bessel equation

AdvancedHelp

(0.005 seconds)

41—50 of 111 matching pages

41: Errata
  • Equation (18.34.1)
    18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 )

    This equation was updated to include the definition of Bessel polynomials in terms of Laguerre polynomials and the Whittaker confluent hypergeometric function.

  • Equation (18.34.2)
    18.34.2
    y n ( x ) = y n ( x ; 2 ) = 2 π 1 x 1 e 1 / x 𝗄 n ( x 1 ) ,
    θ n ( x ) = x n y n ( x 1 ) = 2 π 1 x n + 1 e x 𝗄 n ( x )

    This equation was updated to include definitions in terms of the modified spherical Bessel function of the second kind.

  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • Equation (10.22.72)
    10.22.72 0 J μ ( a t ) J ν ( b t ) J ν ( c t ) t 1 μ d t = ( b c ) μ 1 sin ( ( μ ν ) π ) ( sinh χ ) μ 1 2 ( 1 2 π 3 ) 1 2 a μ e ( μ 1 2 ) i π Q ν 1 2 1 2 μ ( cosh χ ) , μ > 1 2 , ν > 1 , a > b + c , cosh χ = ( a 2 b 2 c 2 ) / ( 2 b c )

    Originally, the factor on the right-hand side was written as ( b c ) μ 1 cos ( ν π ) ( sinh χ ) μ 1 2 ( 1 2 π 3 ) 1 2 a μ , which was taken directly from Watson (1944, p. 412, (13.46.5)), who uses a different normalization for the associated Legendre function of the second kind Q ν μ . Watson’s Q ν μ equals sin ( ( ν + μ ) π ) sin ( ν π ) e μ π i Q ν μ in the DLMF.

    Reported by Arun Ravishankar on 2018-10-22

  • Equations (10.15.1), (10.38.1)

    These equations have been generalized to include the additional cases of J ν ( z ) / ν , I ν ( z ) / ν , respectively.

  • 42: Bibliography O
  • F. W. J. Olver (1950) A new method for the evaluation of zeros of Bessel functions and of other solutions of second-order differential equations. Proc. Cambridge Philos. Soc. 46 (4), pp. 570–580.
  • 43: Bibliography Z
  • F. A. Zafiropoulos, T. N. Grapsa, O. Ragos, and M. N. Vrahatis (1996) On the Computation of Zeros of Bessel and Bessel-related Functions. In Proceedings of the Sixth International Colloquium on Differential Equations (Plovdiv, Bulgaria, 1995), D. Bainov (Ed.), Utrecht, pp. 409–416.
  • 44: 10.44 Sums
    §10.44(i) Multiplication Theorem
    §10.44(ii) Addition Theorems
    Graf’s and Gegenbauer’s Addition Theorems
    §10.44(iii) Neumann-Type Expansions
    §10.44(iv) Compendia
    45: 10.56 Generating Functions
    §10.56 Generating Functions
    10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
    10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
    10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
    10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
    46: 10.21 Zeros
    §10.21(xi) Riccati–Bessel Functions
    47: 13.8 Asymptotic Approximations for Large Parameters
    13.8.11 U ( a , b , z ) 2 ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( a ) ( K b 1 ( 2 a z ) s = 0 p s ( z ) a s + z / a K b ( 2 a z ) s = 0 q s ( z ) a s ) ,
    13.8.12 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a b ) Γ ( a ) ( I b 1 ( 2 a z ) s = 0 p s ( z ) a s z / a I b ( 2 a z ) s = 0 q s ( z ) a s ) ,
    13.8.13 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a ) Γ ( a + b ) ( J b 1 ( 2 a z ) s = 0 p s ( z ) ( a ) s z / a J b ( 2 a z ) s = 0 q s ( z ) ( a ) s ) ,
    48: 10.35 Generating Function and Associated Series
    §10.35 Generating Function and Associated Series
    Jacobi–Anger expansions: for z , θ , …
    10.35.4 1 = I 0 ( z ) 2 I 2 ( z ) + 2 I 4 ( z ) 2 I 6 ( z ) + ,
    cosh z = I 0 ( z ) + 2 I 2 ( z ) + 2 I 4 ( z ) + 2 I 6 ( z ) + ,
    sinh z = 2 I 1 ( z ) + 2 I 3 ( z ) + 2 I 5 ( z ) + .
    49: 18.17 Integrals
    18.17.16_5 1 1 ( 1 x 2 ) λ 1 2 C n ( λ ) ( x ) e i x y d x = 2 π i n Γ ( n + 2 λ ) J n + λ ( y ) n ! Γ ( λ ) ( 2 y ) λ ,
    50: 10.27 Connection Formulas
    §10.27 Connection Formulas
    Other solutions of (10.25.1) are I ν ( z ) and K ν ( z ) .
    10.27.1 I n ( z ) = I n ( z ) ,
    Many properties of modified Bessel functions follow immediately from those of ordinary Bessel functions by application of (10.27.6)–(10.27.8).