About the Project

Bernoulli and Euler numbers

AdvancedHelp

(0.002 seconds)

21—30 of 51 matching pages

21: Software Index
22: 5.17 Barnes’ G -Function (Double Gamma Function)
5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k .
23: 25.6 Integer Arguments
§25.6(i) Function Values
24: 25.16 Mathematical Applications
25.16.10 H ( 2 a ) = 1 2 ζ ( 1 2 a ) = B 2 a 4 a , a = 1 , 2 , 3 , .
H ( s ) has a simple pole with residue ζ ( 1 2 r ) ( = B 2 r / ( 2 r ) ) at each odd negative integer s = 1 2 r , r = 1 , 2 , 3 , . …
25: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • 26: 5.11 Asymptotic Expansions
    5.11.1 Ln Γ ( z ) ( z 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 1 B 2 k 2 k ( 2 k 1 ) z 2 k 1
    27: Bibliography L
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • 28: 2.10 Sums and Sequences
    2.10.8 j = 1 n 1 1 j ln n + γ 1 2 n s = 1 B 2 s 2 s 1 n 2 s , n .
    29: Bibliography C
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • L. Carlitz (1954a) q -Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 76 (2), pp. 332–350.
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • L. Carlitz (1958) Expansions of q -Bernoulli numbers. Duke Math. J. 25 (2), pp. 355–364.
  • M. Chellali (1988) Accélération de calcul de nombres de Bernoulli. J. Number Theory 28 (3), pp. 347–362 (French).
  • 30: 25.11 Hurwitz Zeta Function
    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
    25.11.7 ζ ( s , a ) = 1 a s + 1 ( 1 + a ) s ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k 1 ( 1 + a ) s + 2 k 1 ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) ( x + a ) s + 2 n + 1 d x , s 1 , a > 0 , n = 1 , 2 , 3 , , s > 2 n .
    25.11.28 ζ ( s , a ) = 1 2 a s + a 1 s s 1 + k = 1 n B 2 k ( 2 k ) ! ( s ) 2 k 1 a 1 s 2 k + 1 Γ ( s ) 0 ( 1 e x 1 1 x + 1 2 k = 1 n B 2 k ( 2 k ) ! x 2 k 1 ) x s 1 e a x d x , s > ( 2 n + 1 ) , s 1 , a > 0 .
    25.11.43 ζ ( s , a ) a 1 s s 1 1 2 a s k = 1 B 2 k ( 2 k ) ! ( s ) 2 k 1 a 1 s 2 k .