About the Project

.1994%E5%B9%B4%E4%B8%96%E7%95%8C%E6%9D%AF%E5%B0%8F%E7%BB%84%E5%88%86%E7%BB%84_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F2018%E4%B8%96%E7%95%8C%E6%9D%AF%E7%9B%B4%E6%92%AD%E5%92%AA%E5%92%95_b5p6v3_2022%E5%B9%B411%E6%9C%8830%E6%97%A57%E6%97%B657%E5%88%8610%E7%A7%92_z9fzftt9n.cc

AdvancedHelp

(0.090 seconds)

21—30 of 862 matching pages

21: Bibliography J
  • L. Jager (1998) Fonctions de Mathieu et fonctions propres de l’oscillateur relativiste. Ann. Fac. Sci. Toulouse Math. (6) 7 (3), pp. 465–495 (French).
  • S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel (1993) The birth of the giant component. Random Structures Algorithms 4 (3), pp. 231–358.
  • U. D. Jentschura and E. Lötstedt (2012) Numerical calculation of Bessel, Hankel and Airy functions. Computer Physics Communications 183 (3), pp. 506–519.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).
  • 22: Bibliography G
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • G. Gasper (1977) Positive sums of the classical orthogonal polynomials. SIAM J. Math. Anal. 8 (3), pp. 423–447.
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • 23: Bibliography P
  • J. Patera and P. Winternitz (1973) A new basis for the representation of the rotation group. Lamé and Heun polynomials. J. Mathematical Phys. 14 (8), pp. 1130–1139.
  • M. D. Perlman and I. Olkin (1980) Unbiasedness of invariant tests for MANOVA and other multivariate problems. Ann. Statist. 8 (6), pp. 1326–1341.
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • M. J. D. Powell (1967) On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9 (4), pp. 404–407.
  • W. H. Press and S. A. Teukolsky (1990) Elliptic integrals. Computers in Physics 4 (1), pp. 9296.
  • 24: 10.13 Other Differential Equations
    In (10.13.9)–(10.13.11) 𝒞 ν ( z ) , 𝒟 μ ( z ) are any cylinder functions of orders ν , μ , respectively, and ϑ = z ( d / d z ) .
    10.13.9 z 2 w ′′′ + 3 z w ′′ + ( 4 z 2 + 1 4 ν 2 ) w + 4 z w = 0 , w = 𝒞 ν ( z ) 𝒟 ν ( z ) ,
    10.13.10 z 3 w ′′′ + z ( 4 z 2 + 1 4 ν 2 ) w + ( 4 ν 2 1 ) w = 0 , w = z 𝒞 ν ( z ) 𝒟 ν ( z ) ,
    10.13.11 ( ϑ 4 2 ( ν 2 + μ 2 ) ϑ 2 + ( ν 2 μ 2 ) 2 ) w + 4 z 2 ( ϑ + 1 ) ( ϑ + 2 ) w = 0 , w = 𝒞 ν ( z ) 𝒟 μ ( z ) .
    See also Watson (1944, pp. 95–100).
    25: 10.22 Integrals
    In this subsection 𝒞 ν ( z ) and 𝒟 μ ( z ) denote cylinder functions(§10.2(ii)) of orders ν and μ , respectively, not necessarily distinct. …For the Struve function 𝐇 ν ( z ) see §11.2(i). … For the hypergeometric function 𝐅 see §15.2(i). … Sufficient conditions for the validity of (10.22.77) are that 0 | f ( x ) | d x < when ν 1 2 , or that 0 | f ( x ) | d x < and 0 1 x ν + 1 2 | f ( x ) | d x < when 1 < ν < 1 2 ; see Titchmarsh (1986a, Theorem 135, Chapter 8) and Akhiezer (1988, p. 62). … For collections of Hankel transforms see Erdélyi et al. (1954b, Chapter 8) and Oberhettinger (1972). …
    26: Bibliography L
  • D. H. Lehmer (1940) On the maxima and minima of Bernoulli polynomials. Amer. Math. Monthly 47 (8), pp. 533–538.
  • J. Lehner (1941) A partition function connected with the modulus five. Duke Math. J. 8 (4), pp. 631–655.
  • H. Levine and J. Schwinger (1948) On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74 (8), pp. 958–974.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 9196.
  • N. A. Lukaševič (1968) Solutions of the fifth Painlevé equation. Differ. Uravn. 4 (8), pp. 1413–1420 (Russian).
  • 27: Bibliography U
  • J. Urbanowicz (1988) On the equation f ( 1 ) 1 k + f ( 2 ) 2 k + + f ( x ) x k + R ( x ) = B y 2 . Acta Arith. 51 (4), pp. 349–368.
  • F. Ursell (1960) On Kelvin’s ship-wave pattern. J. Fluid Mech. 8 (3), pp. 418–431.
  • F. Ursell (1984) Integrals with a large parameter: Legendre functions of large degree and fixed order. Math. Proc. Cambridge Philos. Soc. 95 (2), pp. 367–380.
  • 28: 29.7 Asymptotic Expansions
    The same Poincaré expansion holds for b ν m + 1 ( k 2 ) , since …
    29.7.6 τ 2 = 1 2 10 ( 1 + k 2 ) ( 1 k 2 ) 2 ( 5 p 4 + 34 p 2 + 9 ) ,
    29.7.7 τ 3 = p 2 14 ( ( 1 + k 2 ) 4 ( 33 p 4 + 410 p 2 + 405 ) 24 k 2 ( 1 + k 2 ) 2 ( 7 p 4 + 90 p 2 + 95 ) + 16 k 4 ( 9 p 4 + 130 p 2 + 173 ) ) ,
    29.7.8 τ 4 = 1 2 16 ( ( 1 + k 2 ) 5 ( 63 p 6 + 1260 p 4 + 2943 p 2 + 486 ) 8 k 2 ( 1 + k 2 ) 3 ( 49 p 6 + 1010 p 4 + 2493 p 2 + 432 ) + 16 k 4 ( 1 + k 2 ) ( 35 p 6 + 760 p 4 + 2043 p 2 + 378 ) ) .
    In Müller (1966c) it is shown how these expansions lead to asymptotic expansions for the Lamé functions 𝐸𝑐 ν m ( z , k 2 ) and 𝐸𝑠 ν m ( z , k 2 ) . …
    29: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    30: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.