About the Project

.阿根廷世界杯预选赛_『网址:687.vii』世界杯塞尔维亚对哥_b5p6v3_2022年11月28日21时21分47秒_6smwawga4

AdvancedHelp

(0.005 seconds)

11—20 of 219 matching pages

11: 26.8 Set Partitions: Stirling Numbers
§26.8(vii) Asymptotic Approximations
26.8.41 s ( n + k , k ) ( 1 ) n 2 n n ! k 2 n , k ,
26.8.43 S ( n + k , k ) k 2 n 2 n n ! , k ,
12: 12.10 Uniform Asymptotic Expansions for Large Parameter
These cases are treated in §§12.10(vii)12.10(viii). …
12.10.23 η = 1 2 arccos t 1 2 t 1 t 2 ,
§12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
12.10.40 ϕ ( ζ ) = ( ζ t 2 1 ) 1 4 .
12.10.41 t = 1 + w 1 10 w 2 + 11 350 w 3 823 63000 w 4 + 1 50653 242 55000 w 5 + , | ζ | < ( 3 4 π ) 2 3 .
13: 25.21 Software
§25.21(vii) Fermi–Dirac and Bose–Einstein Integrals
14: 10.21 Zeros
§10.21(vii) Asymptotic Expansions for Large Order
10.21.24 θ ( 2 1 3 α ) = π t ,
(There is an inaccuracy in Figures 11 and 14 in this reference. … This information includes asymptotic approximations analogous to those given in §§10.21(vi), 10.21(vii), and 10.21(x). …
15: 3.6 Linear Difference Equations
In practice, however, problems of severe instability often arise and in §§3.6(ii)3.6(vii) we show how these difficulties may be overcome. …
Table 3.6.1: Weber function w n = 𝐄 n ( 1 ) computed by Olver’s algorithm.
n p n e n e n / ( p n p n + 1 ) w n
11 0.29154 738 ×10¹⁰ 0.37225 201 ×10¹⁰ 0.19952 026 ×10⁻¹⁰ 0.58373 946 ×10⁻¹
§3.6(vii) Linear Difference Equations of Other Orders
3.6.17 a n w n + 1 b n w n = d n .
3.6.18 a n , k w n + k + a n , k 1 w n + k 1 + + a n , 0 w n = d n ,
16: 34.3 Basic Properties: 3 j Symbol
See Srinivasa Rao and Rajeswari (1993, pp. 44–47) and references given there. …
§34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
34.3.21 0 π P l 1 ( cos θ ) P l 2 ( cos θ ) P l 3 ( cos θ ) sin θ d θ = 2 ( l 1 l 2 l 3 0 0 0 ) 2 ,
34.3.22 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) Y l 2 , m 2 ( θ , ϕ ) Y l 3 , m 3 ( θ , ϕ ) sin θ d θ d ϕ = ( ( 2 l 1 + 1 ) ( 2 l 2 + 1 ) ( 2 l 3 + 1 ) 4 π ) 1 2 ( l 1 l 2 l 3 0 0 0 ) ( l 1 l 2 l 3 m 1 m 2 m 3 ) .
17: 9.18 Tables
  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • §9.18(vii) Generalized Airy Functions
    18: 16.25 Methods of Computation
    See §§3.6(vii), 3.7(iii), Olde Daalhuis and Olver (1998), Lozier (1980), and Wimp (1984, Chapters 7, 8).
    19: 24.2 Definitions and Generating Functions
    24.2.3 t e x t e t 1 = n = 0 B n ( x ) t n n ! , | t | < 2 π .
    24.2.8 2 e x t e t + 1 = n = 0 E n ( x ) t n n ! , | t | < π ,
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    28 2 37494 61029 870 2.72982 3107 ×10⁷
    Table 24.2.4: Euler numbers E n .
    n E n
    28 12522 59641 40362 98654 68285
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    11 0 5 6 0 11 2 0 11 0 11 0 55 6 11 2 1
    20: Bibliography W
  • J. H. Wilkinson (1988) The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford Science Publications, The Clarendon Press, Oxford University Press, Oxford.
  • J. Wimp (1984) Computation with Recurrence Relations. Pitman, Boston, MA.
  • G. Wolf (2008) On the asymptotic behavior of the Fourier coefficients of Mathieu functions. J. Res. Nat. Inst. Standards Tech. 113 (1), pp. 11–15.
  • R. Wong (1982) Quadrature formulas for oscillatory integral transforms. Numer. Math. 39 (3), pp. 351–360.
  • R. Wong (1989) Asymptotic Approximations of Integrals. Academic Press Inc., Boston-New York.