About the Project

.%E9%98%BF%E6%A0%B9%E5%BB%B7%E4%B8%96%E7%95%8C%E6%9D%AF%E9%A2%84%E9%80%89%E8%B5%9B_%E3%80%8E%E7%BD%91%E5%9D%80%3A68707.vip%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E5%A1%9E%E5%B0%94%E7%BB%B4%E4%BA%9A%E5%AF%B9%E5%93%A5_b5p6v3_2022%E5%B9%B411%E6%9C%8828%E6%97%A521%E6%97%B621%E5%88%8647%E7%A7%92_6smwawga4

AdvancedHelp

(0.043 seconds)

11—20 of 738 matching pages

11: Bibliography
β–Ί
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • β–Ί
  • G. E. Andrews and D. Foata (1980) Congruences for the q -secant numbers. European J. Combin. 1 (4), pp. 283–287.
  • β–Ί
  • G. E. Andrews, I. P. Goulden, and D. M. Jackson (1986) Shanks’ convergence acceleration transform, Padé approximants and partitions. J. Combin. Theory Ser. A 43 (1), pp. 70–84.
  • β–Ί
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • β–Ί
  • R. Askey and G. Gasper (1976) Positive Jacobi polynomial sums. II. Amer. J. Math. 98 (3), pp. 709–737.
  • 12: Bibliography G
    β–Ί
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • β–Ί
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • β–Ί
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • β–Ί
  • W. Gautschi (1975) Computational Methods in Special Functions – A Survey. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 1–98. Math. Res. Center, Univ. Wisconsin Publ., No. 35.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004c) Integral representations for computing real parabolic cylinder functions. Numer. Math. 98 (1), pp. 105–134.
  • 13: Bibliography H
    β–Ί
  • P. I. HadΕΎi (1975a) Certain integrals that contain a probability function. Bul. Akad. Ε tiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976a) Expansions for the probability function in series of ČebyΕ‘ev polynomials and Bessel functions. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 8084, 96 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 8084, 95 (Russian).
  • β–Ί
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 9598.
  • 14: 10.32 Integral Representations
    β–Ί
    10.32.14 K Ξ½ ⁑ ( z ) = 1 2 ⁒ Ο€ 2 ⁒ i ⁒ ( Ο€ 2 ⁒ z ) 1 2 ⁒ e z ⁒ cos ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ i ⁒ i ⁒ Ξ“ ⁑ ( t ) ⁒ Ξ“ ⁑ ( 1 2 t Ξ½ ) ⁒ Ξ“ ⁑ ( 1 2 t + Ξ½ ) ⁒ ( 2 ⁒ z ) t ⁒ d t , Ξ½ 1 2 β„€ , | ph ⁑ z | < 3 2 ⁒ Ο€ .
    β–Ί
    10.32.19 K ΞΌ ⁑ ( z ) ⁒ K Ξ½ ⁑ ( z ) = 1 8 ⁒ Ο€ ⁒ i ⁒ c i ⁒ c + i ⁒ Ξ“ ⁑ ( t + 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ ) ⁒ Ξ“ ⁑ ( t + 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ ) ⁒ Ξ“ ⁑ ( t 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ ) ⁒ Ξ“ ⁑ ( t 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ ) Ξ“ ⁑ ( 2 ⁒ t ) ⁒ ( 1 2 ⁒ z ) 2 ⁒ t ⁒ d t , c > 1 2 ⁒ ( | ⁑ ΞΌ | + | ⁑ Ξ½ | ) , | ph ⁑ z | < 1 2 ⁒ Ο€ .
    15: Bibliography S
    β–Ί
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • β–Ί
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • β–Ί
  • A. Sidi (2004) Euler-Maclaurin expansions for integrals with endpoint singularities: A new perspective. Numer. Math. 98 (2), pp. 371–387.
  • β–Ί
  • R. Spigler, M. Vianello, and F. Locatelli (1999) Liouville-Green-Olver approximations for complex difference equations. J. Approx. Theory 96 (2), pp. 301–322.
  • β–Ί
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • 16: Bibliography M
    β–Ί
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • β–Ί
  • A. E. Milne, P. A. Clarkson, and A. P. Bassom (1997) Bäcklund transformations and solution hierarchies for the third Painlevé equation. Stud. Appl. Math. 98 (2), pp. 139–194.
  • β–Ί
  • E. W. Montroll (1964) Lattice Statistics. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), University of California Engineering and Physical Sciences Extension Series, pp. 96–143.
  • 17: Bibliography K
    β–Ί
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • β–Ί
  • S. Koizumi (1976) Theta relations and projective normality of Abelian varieties. Amer. J. Math. 98 (4), pp. 865–889.
  • β–Ί
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • β–Ί
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • β–Ί
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 18: 28.2 Definitions and Basic Properties
    β–Ί
    28.2.24 b n ⁑ ( 0 ) = n 2 , n = 1 , 2 , 3 , .
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 28.2.1: Eigenvalues a n ⁑ ( q ) , b n ⁑ ( q ) of Mathieu’s equation as functions of q for 0 q 10 , n = 0 , 1 , 2 , 3 , 4 ( a ’s), n = 1 , 2 , 3 , 4 ( b ’s). Magnify
    β–Ί
    28.2.25 for  q > 0 : a 0 ⁑ < b 1 ⁑ < a 1 ⁑ < b 2 ⁑ < a 2 ⁑ < b 3 ⁑ < β‹― , for  q < 0 : a 0 ⁑ < a 1 ⁑ < b 1 ⁑ < b 2 ⁑ < a 2 ⁑ < a 3 ⁑ < β‹― .
    β–Ί
    se n ⁑ ( z , 0 ) = sin ⁑ ( n ⁒ z ) , n = 1 , 2 , 3 , .
    19: Bibliography B
    β–Ί
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • β–Ί
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • β–Ί
  • R. Bo and R. Wong (1996) Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 96, pp. 307–338.
  • β–Ί
  • R. Bo and R. Wong (1999) A uniform asymptotic formula for orthogonal polynomials associated with exp ⁑ ( x 4 ) . J. Approx. Theory 98, pp. 146–166.
  • β–Ί
  • J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi (2001) Irregular primes and cyclotomic invariants to 12 million. J. Symbolic Comput. 31 (1-2), pp. 8996.
  • 20: 1.9 Calculus of a Complex Variable
    β–ΊIf f ⁑ ( z ) is continuous within and on a simple closed contour C and analytic within C , then … β–ΊIf f ⁑ ( z ) is continuous within and on a simple closed contour C and analytic within C , and if z 0 is a point within C , then … β–ΊIf C is a closed contour, and z 0 C , then … β–ΊSuppose f ⁑ ( z ) is analytic in a domain D and C 1 , C 2 are two arcs in D passing through z 0 . … β–Ίfor any finite contour C in D . …