About the Project

.%E7%94%B7%E7%AF%AE%E4%B8%96%E7%95%8C%E6%9D%AF%E9%A2%84%E9%80%89%E8%B5%9B%E4%B8%AD%E5%9B%BDvs%E9%BB%8E%E5%B7%B4%E5%AB%A9%E3%80%8Ewn4.com%E3%80%8F%E5%92%AA%E5%92%95%E4%B8%96%E7%95%8C%E6%9D%AF%E8%90%A5%E9%94%80%E6%96%B9%E6%A1%88.w6n2c9o.2022%E5%B9%B411%E6%9C%8829%E6%97%A55%E6%97%B652%E5%88%862%E7%A7%92.yeyo8yaka

AdvancedHelp

(0.021 seconds)

21—30 of 666 matching pages

21: 33.20 Expansions for Small | Ο΅ |
β–Ίwhere β–Ί
33.20.4 π–₯ k ⁑ ( β„“ ; r ) = p = 2 ⁒ k 3 ⁒ k ( 2 ⁒ r ) ( p + 1 ) / 2 ⁒ C k , p ⁒ J 2 ⁒ β„“ + 1 + p ⁑ ( 8 ⁒ r ) , r > 0 ,
β–Ί
33.20.5 π–₯ k ⁑ ( β„“ ; r ) = p = 2 ⁒ k 3 ⁒ k ( 1 ) β„“ + 1 + p ⁒ ( 2 ⁒ | r | ) ( p + 1 ) / 2 ⁒ C k , p ⁒ I 2 ⁒ β„“ + 1 + p ⁑ ( 8 ⁒ | r | ) , r < 0 .
β–ΊThe functions J and I are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by C 0 , 0 = 1 , C 1 , 0 = 0 , and … β–ΊThe functions Y and K are as in §§10.2(ii), 10.25(ii), and the coefficients C k , p are given by (33.20.6). …
22: 6.14 Integrals
β–Ί
6.14.1 0 e a ⁒ t ⁒ E 1 ⁑ ( t ) ⁒ d t = 1 a ⁒ ln ⁑ ( 1 + a ) , ⁑ a > 1 ,
β–Ί
6.14.4 0 E 1 2 ⁑ ( t ) ⁒ d t = 2 ⁒ ln ⁑ 2 ,
β–ΊFor collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
23: Bibliography M
β–Ί
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • J. N. Merner (1962) Algorithm 149: Complete elliptic integral. Comm. ACM 5 (12), pp. 605.
  • β–Ί
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • β–Ί
  • E. W. Montroll (1964) Lattice Statistics. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), University of California Engineering and Physical Sciences Extension Series, pp. 96–143.
  • 24: 5.13 Integrals
    25: 27.2 Functions
    β–Ί
    27.2.9 d ⁑ ( n ) = d | n 1
    β–ΊIt is the special case k = 2 of the function d k ⁑ ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . … β–ΊTable 27.2.2 tabulates the Euler totient function Ο• ⁑ ( n ) , the divisor function d ⁑ ( n ) ( = Οƒ 0 ⁑ ( n ) ), and the sum of the divisors Οƒ ⁑ ( n ) ( = Οƒ 1 ⁑ ( n ) ), for n = 1 ⁒ ( 1 ) ⁒ 52 . … β–Ί
    Table 27.2.2: Functions related to division.
    β–Ί β–Ίβ–Ίβ–Ί
    n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n ) n Ο• ⁑ ( n ) d ⁑ ( n ) Οƒ ⁑ ( n )
    3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
    β–Ί
    26: 7.14 Integrals
    β–Ί
    7.14.1 0 e 2 ⁒ i ⁒ a ⁒ t ⁒ erfc ⁑ ( b ⁒ t ) ⁒ d t = 1 a ⁒ Ο€ ⁒ F ⁑ ( a b ) + i 2 ⁒ a ⁒ ( 1 e ( a / b ) 2 ) , a β„‚ , | ph ⁑ b | < 1 4 ⁒ Ο€ .
    β–Ί
    7.14.5 0 e a ⁒ t ⁒ C ⁑ ( t ) ⁒ d t = 1 a ⁒ f ⁑ ( a Ο€ ) , ⁑ a > 0 ,
    β–Ί
    7.14.7 0 e a ⁒ t ⁒ C ⁑ ( 2 ⁒ t Ο€ ) ⁒ d t = ( a 2 + 1 + a ) 1 2 2 ⁒ a ⁒ a 2 + 1 , ⁑ a > 0 ,
    β–ΊFor collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). …
    27: 9.8 Modulus and Phase
    β–Ί
    9.8.20 M 2 ⁑ ( x ) 1 Ο€ ⁒ ( x ) 1 / 2 ⁒ k = 0 1 3 5 ⁒ β‹― ⁒ ( 6 ⁒ k 1 ) k ! ⁒ ( 96 ) k ⁒ 1 x 3 ⁒ k ,
    β–Ί
    9.8.21 N 2 ⁑ ( x ) ( x ) 1 / 2 Ο€ ⁒ k = 0 1 3 5 ⁒ β‹― ⁒ ( 6 ⁒ k 1 ) k ! ⁒ ( 96 ) k ⁒ 1 + 6 ⁒ k 1 6 ⁒ k ⁒ 1 x 3 ⁒ k ,
    β–Ί
    9.8.22 ΞΈ ⁑ ( x ) Ο€ 4 + 2 3 ⁒ ( x ) 3 / 2 ⁒ ( 1 + 5 32 ⁒ 1 x 3 + 1105 6144 ⁒ 1 x 6 + 82825 65536 ⁒ 1 x 9 + 12820 31525 587 20256 ⁒ 1 x 12 + β‹― ) ,
    β–Ί
    9.8.23 Ο• ⁑ ( x ) Ο€ 4 + 2 3 ⁒ ( x ) 3 / 2 ⁒ ( 1 7 32 ⁒ 1 x 3 1463 6144 ⁒ 1 x 6 4 95271 3 27680 ⁒ 1 x 9 2065 30429 83 88608 ⁒ 1 x 12 β‹― ) .
    28: Bibliography B
    β–Ί
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • β–Ί
  • A. P. Bassom, P. A. Clarkson, and A. C. Hicks (1995) Bäcklund transformations and solution hierarchies for the fourth Painlevé equation. Stud. Appl. Math. 95 (1), pp. 1–71.
  • β–Ί
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • β–Ί
  • R. Bo and R. Wong (1996) Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 96, pp. 307–338.
  • β–Ί
  • J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi (2001) Irregular primes and cyclotomic invariants to 12 million. J. Symbolic Comput. 31 (1-2), pp. 8996.
  • 29: 4.40 Integrals
    β–ΊExtensive compendia of indefinite and definite integrals of hyperbolic functions include Apelblat (1983, pp. 96–109), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 139–160), Gröbner and Hofreiter (1950, pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).
    30: 9.9 Zeros
    β–Ί
    9.9.6 a k = T ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 1 ) ) ,
    β–Ί
    9.9.7 Ai ⁑ ( a k ) = ( 1 ) k 1 ⁒ V ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 1 ) ) ,
    β–Ί
    9.9.8 a k = U ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 3 ) ) ,
    β–Ί
    9.9.10 b k = T ⁑ ( 3 8 ⁒ Ο€ ⁒ ( 4 ⁒ k 3 ) ) ,
    β–Ί
    9.9.21 W ⁑ ( t ) Ο€ 1 / 2 ⁒ t 1 / 6 ⁒ ( 1 7 96 ⁒ t 2 + 1673 6144 ⁒ t 4 843 94709 265 42080 ⁒ t 6 + 78 02771 35421 1 01921 58720 ⁒ t 8 20444 90510 51945 6 52298 15808 ⁒ t 10 + β‹― ) .