About the Project

.%E6%A2%85%E8%A5%BF%E5%92%8Cc%E7%BD%97%E7%AC%AC%E4%B8%80%E6%AC%A1%E4%B8%96%E7%95%8C%E6%9D%AF%E3%80%8E%E7%BD%91%E5%9D%80%3Amxsty.cc%E3%80%8F.%E6%97%B6%E4%B8%96%E7%95%8C%E6%9D%AF%E8%B5%9B%E7%A8%8B-m6q3s2-qmymcyumu.com

AdvancedHelp

(0.036 seconds)

21—30 of 736 matching pages

21: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • Yu. L. Ratis and P. Fernández de Córdoba (1993) A code to calculate (high order) Bessel functions based on the continued fractions method. Comput. Phys. Comm. 76 (3), pp. 381–388.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • 22: Bibliography H
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • 23: 26.8 Set Partitions: Stirling Numbers
    Table 26.8.1: Stirling numbers of the first kind s ( n , k ) .
    n k
    0 1 2 3 4 5 6 7 8 9 10
    6 0 120 274 225 85 15 1
    Table 26.8.2: Stirling numbers of the second kind S ( n , k ) .
    n k
    8 0 1 127 966 1701 1050 266 28 1
    Let A and B be the n × n matrices with ( j , k ) th elements s ( j , k ) , and S ( j , k ) , respectively. …
    26.8.38 A 1 = B .
    24: Bibliography M
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • C. S. Meijer (1946) On the G -function. VII, VIII. Nederl. Akad. Wetensch., Proc. 49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • H. P. Mulholland and S. Goldstein (1929) The characteristic numbers of the Mathieu equation with purely imaginary parameter. Phil. Mag. Series 7 8 (53), pp. 834–840.
  • 25: Bibliography C
  • B. C. Carlson and J. FitzSimons (2000) Reduction theorems for elliptic integrands with the square root of two quadratic factors. J. Comput. Appl. Math. 118 (1-2), pp. 71–85.
  • B. C. Carlson (1977a) Elliptic integrals of the first kind. SIAM J. Math. Anal. 8 (2), pp. 231–242.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • G. M. Cicuta and E. Montaldi (1975) Remarks on the full asymptotic expansion of Feynman parametrized integrals. Lett. Nuovo Cimento (2) 13 (8), pp. 310–312.
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • 26: Bibliography S
  • F. W. Schäfke and D. Schmidt (1966) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III. Numer. Math. 8 (1), pp. 68–71.
  • J. B. Seaborn (1991) Hypergeometric Functions and Their Applications. Texts in Applied Mathematics, Vol. 8, Springer-Verlag, New York.
  • R. Shail (1978) Lamé polynomial solutions to some elliptic crack and punch problems. Internat. J. Engrg. Sci. 16 (8), pp. 551–563.
  • R. Sips (1967) Répartition du courant alternatif dans un conducteur cylindrique de section elliptique. Acad. Roy. Belg. Bull. Cl. Sci. (5) 53 (8), pp. 861–878.
  • R. Spigler (1980) Some results on the zeros of cylindrical functions and of their derivatives. Rend. Sem. Mat. Univ. Politec. Torino 38 (1), pp. 67–85 (Italian. English summary).
  • 27: 20.4 Values at z = 0
    20.4.1 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) = θ 3 ( 0 , q ) = θ 4 ( 0 , q ) = 0 ,
    20.4.2 θ 1 ( 0 , q ) = 2 q 1 / 4 n = 1 ( 1 q 2 n ) 3 = 2 q 1 / 4 ( q 2 ; q 2 ) 3 ,
    20.4.9 θ 2 ′′ ( 0 , q ) θ 2 ( 0 , q ) = 1 8 n = 1 q 2 n ( 1 + q 2 n ) 2 ,
    20.4.10 θ 3 ′′ ( 0 , q ) θ 3 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 + q 2 n 1 ) 2 ,
    20.4.11 θ 4 ′′ ( 0 , q ) θ 4 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 q 2 n 1 ) 2 .
    28: 8 Incomplete Gamma and Related
    Functions
    Chapter 8 Incomplete Gamma and Related Functions
    29: DLMF Project News
    error generating summary
    30: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.