About the Project

%E5%A4%A7%E9%83%BD%E4%BC%9A%E6%97%B6%E6%97%B6%E5%BD%A9%E7%BD%91%E5%9D%80%E3%80%90%E6%9D%8F%E5%BD%A9%E4%BD%93%E8%82%B2qee9.com%E3%80%919fdS

AdvancedHelp

(0.014 seconds)

11—20 of 534 matching pages

11: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • L. Vietoris (1983) Dritter Beweis der die unvollständige Gammafunktion betreffenden Lochsschen Ungleichungen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 192 (1-3), pp. 8391 (German).
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • 12: 19.11 Addition Theorems
    13: Bibliography B
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • K. Bay, W. Lay, and A. Akopyan (1997) Avoided crossings of the quartic oscillator. J. Phys. A 30 (9), pp. 3057–3067.
  • P. L. Butzer, M. Hauss, and M. Leclerc (1992) Bernoulli numbers and polynomials of arbitrary complex indices. Appl. Math. Lett. 5 (6), pp. 83–88.
  • P. L. Butzer and M. Hauss (1992) Riemann zeta function: Rapidly converging series and integral representations. Appl. Math. Lett. 5 (2), pp. 83–88.
  • J. G. Byatt-Smith (2000) The Borel transform and its use in the summation of asymptotic expansions. Stud. Appl. Math. 105 (2), pp. 83–113.
  • 14: 23.10 Addition Theorems and Other Identities
    23.10.13 σ ( n z ) = A n e n ( n 1 ) ( η 1 + η 3 ) z j = 0 n 1 = 0 n 1 σ ( z + 2 j n ω 1 + 2 n ω 3 ) ,
    where
    23.10.14 A n = n j = 0 n 1 = 0 j n 1 1 σ ( ( 2 j ω 1 + 2 ω 3 ) / n ) .
    23.10.15 A n = ( π 2 G 2 ω 1 ) n 2 1 q n ( n 1 ) / 2 i n 1 exp ( ( n 1 ) η 1 3 ω 1 ( ( 2 n 1 ) ( ω 1 2 + ω 3 2 ) + 3 ( n 1 ) ω 1 ω 3 ) ) ,
    15: Bibliography
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1990) Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21 (2), pp. 536–549.
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • H. Appel (1968) Numerical Tables for Angular Correlation Computations in α -, β - and γ -Spectroscopy: 3 j -, 6 j -, 9 j -Symbols, F- and Γ -Coefficients. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag.
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 16: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • T. C. Scott, G. Fee, and J. Grotendorst (2013) Asymptotic series of generalized Lambert W function. ACM Commun. Comput. Algebra 47 (3), pp. 75–83.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • K. Srinivasa Rao, V. Rajeswari, and C. B. Chiu (1989) A new Fortran program for the 9 - j angular momentum coefficient. Comput. Phys. Comm. 56 (2), pp. 231–248.
  • S. K. Suslov (2003) An Introduction to Basic Fourier Series. Developments in Mathematics, Vol. 9, Kluwer Academic Publishers, Dordrecht.
  • 17: 4.5 Inequalities
    For more inequalities involving the exponential function see Mitrinović (1964, pp. 73–77), Mitrinović (1970, pp. 266–271), and Bullen (1998, pp. 81–83).
    18: Bibliography K
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • M. Kaneko (1997) Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
  • M. K. Kerimov (2008) Overview of some new results concerning the theory and applications of the Rayleigh special function. Comput. Math. Math. Phys. 48 (9), pp. 1454–1507.
  • E. Kreyszig (1957) On the zeros of the Fresnel integrals. Canad. J. Math. 9, pp. 118–131.
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.
  • 19: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1975b) Integrals containing the Fresnel functions S ( x ) and C ( x ) . Bul. Akad. Štiince RSS Moldoven. 1975 (3), pp. 48–60, 93 (Russian).
  • B. Hayes (2009) The higher arithmetic. American Scientist 97, pp. 364–368.
  • J. R. Herndon (1961b) Algorithm 56: Complete elliptic integral of the second kind. Comm. ACM 4 (4), pp. 180–181.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • 20: 10.21 Zeros
    10.21.19 j ν , m , y ν , m a μ 1 8 a 4 ( μ 1 ) ( 7 μ 31 ) 3 ( 8 a ) 3 32 ( μ 1 ) ( 83 μ 2 982 μ + 3779 ) 15 ( 8 a ) 5 64 ( μ 1 ) ( 6949 μ 3 1 53855 μ 2 + 15 85743 μ 62 77237 ) 105 ( 8 a ) 7 ,
    10.21.20 j ν , m , y ν , m b μ + 3 8 b 4 ( 7 μ 2 + 82 μ 9 ) 3 ( 8 b ) 3 32 ( 83 μ 3 + 2075 μ 2 3039 μ + 3537 ) 15 ( 8 b ) 5 64 ( 6949 μ 4 + 2 96492 μ 3 12 48002 μ 2 + 74 14380 μ 58 53627 ) 105 ( 8 b ) 7 ,
    10.21.21 j ν , m ′′ c μ + 7 8 c 28 μ 2 + 424 μ + 1724 3 ( 8 c ) 3 ,
    β 2 = 9 350 α 2 + 1 100 α 1 ,
    J ν ( j ν , 1 ) 1.11310 28 ν 2 3 ÷ ( 1 + 1.48460 6 ν 2 3 + 0.43294 ν 4 3 0.1943 ν 2 + 0.019 ν 8 3 + ) ,