About the Project

division algorithm

AdvancedHelp

(0.002 seconds)

8 matching pages

1: 1.11 Zeros of Polynomials
§1.11(i) Division Algorithm
2: 27.19 Methods of Computation: Factorization
Trial division is one example. Fermat’s algorithm is another; see Bressoud (1989, §5.1). Type I probabilistic algorithms include the Brent–Pollard rho algorithm (also called Monte Carlo method), the Pollard p 1 algorithm, and the Elliptic Curve Method (ecm). Descriptions of these algorithms are given in Crandall and Pomerance (2005, §§5.2, 5.4, and 7.4). … These algorithms include the Continued Fraction Algorithm (cfrac), the Multiple Polynomial Quadratic Sieve (mpqs), the General Number Field Sieve (gnfs), and the Special Number Field Sieve (snfs). …
3: 27.18 Methods of Computation: Primes
For small values of n , primality is proven by showing that n is not divisible by any prime not exceeding n . Two simple algorithms for proving primality require a knowledge of all or part of the factorization of n 1 , n + 1 , or both; see Crandall and Pomerance (2005, §§4.1–4.2). … The APR (Adleman–Pomerance–Rumely) algorithm for primality testing is based on Jacobi sums. … The AKS (Agrawal–Kayal–Saxena) algorithm is the first deterministic, polynomial-time, primality test. … The ECPP (Elliptic Curve Primality Proving) algorithm handles primes with over 20,000 digits. …
4: 3.10 Continued Fractions
Quotient-Difference Algorithm
To compute the C n of (3.10.2) we perform the iterated divisions
Steed’s Algorithm
Alternatives to Steed’s algorithm are the Lentz algorithm Lentz (1976) and the modified Lentz algorithm Thompson and Barnett (1986). …
5: 27.22 Software
  • Maple. isprime combines a strong pseudoprime test and a Lucas pseudoprime test. ifactor uses cfrac27.19) after exhausting trial division. Brent–Pollard rho, Square Forms Factorization, and ecm are available also; see §27.19.

  • Mathematica. PrimeQ combines strong pseudoprime tests for the bases 2 and 3 and a Lucas pseudoprime test. No known composite numbers pass these three tests, and Bleichenbacher (1996) has shown that this combination of tests proves primality for integers below 10 16 . Provable PrimeQ uses the Atkin–Goldwasser–Kilian–Morain Elliptic Curve Method to prove primality. FactorInteger tries Brent–Pollard rho, Pollard p 1 , and then cfrac after trial division. See §27.19. ecm is available also, and the Multiple Polynomial Quadratic sieve is expected in a future release.

    For additional Mathematica routines for factorization and primality testing, including several different pseudoprime tests, see Bressoud and Wagon (2000).

  • Wolfram’s Mathworld. Descriptions, references, and Mathematica algorithms for factorization and primality testing.

  • 6: Philip J. Davis
    … … At that time John Todd was Chief of the Numerical Analysis Section of the Applied Mathematics Division and head of the Computation Laboratory that co-developed, with the NBS Electronic Computer Laboratory, the Standards Eastern Automatic Computer (SEAC), the first fully operational stored-program electronic digital computer in the United States. … In 1961, Davis hired Frank W. J. Olver, a founding member of the Mathematics Division and Head of the Numerical Methods Section at the National Physical Laboratory, Teddington, U. … Davis left NBS in 1963 to become a faculty member in the Division of Applied Mathematics at Brown University, but during the early development of the DLMF, which started in 1998, he was invited back to give a talk and speak with DLMF project members about their plans. …This immediately led to discussions among some of the project members about what might be possible, and the discovery that some interactive graphics work had already been done for the NIST Matrix Market, a publicly available repository of test matrices for comparing the effectiveness of numerical linear algebra algorithms. …
    7: Bibliography L
  • J. LeCaine (1945) A table of integrals involving the functions E n ( x ) .
  • W. R. Leeb (1979) Algorithm 537: Characteristic values of Mathieu’s differential equation. ACM Trans. Math. Software 5 (1), pp. 112–117.
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • Y. L. Luke (1977b) Algorithms for the Computation of Mathematical Functions. Academic Press, New York.
  • 8: Bibliography P
  • K. A. Paciorek (1970) Algorithm 385: Exponential integral Ei ( x ) . Comm. ACM 13 (7), pp. 446–447.
  • F. A. Paxton and J. E. Rollin (1959) Tables of the Incomplete Elliptic Integrals of the First and Third Kind. Technical report Curtiss-Wright Corp., Research Division, Quehanna, PA.
  • R. Piessens and M. Branders (1984) Algorithm 28. Algorithm for the computation of Bessel function integrals. J. Comput. Appl. Math. 11 (1), pp. 119–137.
  • G. P. M. Poppe and C. M. J. Wijers (1990) Algorithm 680: Evaluation of the complex error function. ACM Trans. Math. Software 16 (1), pp. 47.
  • P. J. Prince (1975) Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 1 (4), pp. 372–379.