About the Project

Cosines

AdvancedHelp

(0.000 seconds)

21—30 of 287 matching pages

21: 6.19 Tables
§6.19(ii) Real Variables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • 22: 14.18 Sums
    14.18.1 𝖯 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖯 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖯 ν m ( cos θ 2 ) cos ( m ϕ ) ,
    14.18.2 𝖯 n ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = m = n n ( 1 ) m 𝖯 n m ( cos θ 1 ) 𝖯 n m ( cos θ 2 ) cos ( m ϕ ) .
    14.18.3 𝖰 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖰 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖰 ν m ( cos θ 2 ) cos ( m ϕ ) .
    14.18.4 P ν ( cosh ξ 1 cosh ξ 2 sinh ξ 1 sinh ξ 2 cos ϕ ) = P ν ( cosh ξ 1 ) P ν ( cosh ξ 2 ) + 2 m = 1 ( 1 ) m P ν m ( cosh ξ 1 ) P ν m ( cosh ξ 2 ) cos ( m ϕ ) ,
    14.18.5 Q ν ( cosh ξ 1 cosh ξ 2 sinh ξ 1 sinh ξ 2 cos ϕ ) = P ν ( cosh ξ 1 ) Q ν ( cosh ξ 2 ) + 2 m = 1 ( 1 ) m P ν m ( cosh ξ 1 ) Q ν m ( cosh ξ 2 ) cos ( m ϕ ) .
    23: 6.15 Sums
    §6.15 Sums
    6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
    24: 6.21 Software
    §6.21(ii) E 1 ( x ) , Ei ( x ) , Si ( x ) , Ci ( x ) , Shi ( x ) , Chi ( x ) , x
    §6.21(iii) E 1 ( z ) , Si ( z ) , Ci ( z ) , Shi ( z ) , Chi ( z ) , z
    25: 6.7 Integral Representations
    §6.7(ii) Sine and Cosine Integrals
    6.7.9 si ( z ) = 0 π / 2 e z cos t cos ( z sin t ) d t ,
    6.7.10 Ein ( z ) Cin ( z ) = 0 π / 2 e z cos t sin ( z sin t ) d t ,
    §6.7(iii) Auxiliary Functions
    6.7.15 f ( z ) = 2 0 K 0 ( 2 z t ) cos t d t ,
    26: 14.19 Toroidal (or Ring) Functions
    x = c sinh η cos ϕ cosh η cos θ ,
    y = c sinh η sin ϕ cosh η cos θ ,
    z = c sin θ cosh η cos θ ,
    14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
    14.19.6 𝑸 1 2 μ ( cosh ξ ) + 2 n = 1 Γ ( μ + n + 1 2 ) Γ ( μ + 1 2 ) 𝑸 n 1 2 μ ( cosh ξ ) cos ( n ϕ ) = ( 1 2 π ) 1 / 2 ( sinh ξ ) μ ( cosh ξ cos ϕ ) μ + ( 1 / 2 ) , μ > 1 2 .
    27: 28.26 Asymptotic Approximations for Large q
    28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
    28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
    28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
    28.26.5 Gc m ( z , h ) sinh z cosh 2 z ( s 2 + 3 2 5 h + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cosh 2 z ) + 1 2 14 h 3 ( 5 s 4 + 34 s 2 + 9 s 6 47 s 4 + 667 s 2 + 2835 12 cosh 2 z + s 6 + 505 s 4 + 12139 s 2 + 10395 12 cosh 4 z ) ) + .
    28: 6.3 Graphics
    See accompanying text
    Figure 6.3.2: The sine and cosine integrals Si ( x ) , Ci ( x ) , 0 x 15 . Magnify
    29: 6.13 Zeros
    6.13.1 x 0 = 0.37250 74107 81366 63446 19918 66580 .
    Ci ( x ) and si ( x ) each have an infinite number of positive real zeros, which are denoted by c k , s k , respectively, arranged in ascending order of absolute value for k = 0 , 1 , 2 , . Values of c 1 and c 2 to 30D are given by MacLeod (1996b). …
    6.13.2 c k , s k α + 1 α 16 3 1 α 3 + 1673 15 1 α 5 5 07746 105 1 α 7 + ,
    30: 24.7 Integral Representations
    24.7.7 B 2 n ( x ) = ( 1 ) n + 1 2 n 0 cos ( 2 π x ) e 2 π t cosh ( 2 π t ) cos ( 2 π x ) t 2 n 1 d t , n = 1 , 2 , ,
    24.7.8 B 2 n + 1 ( x ) = ( 1 ) n + 1 ( 2 n + 1 ) 0 sin ( 2 π x ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t .
    24.7.9 E 2 n ( x ) = ( 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t ,
    24.7.10 E 2 n + 1 ( x ) = ( 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n + 1 d t .