About the Project

.11选5世界杯电竞网址『世界杯佣金分红55%,咨询专员:@ky975』.4y0.k2q1w9-2022年11月29日8时51分48秒6qguwmgqc

AdvancedHelp

(0.003 seconds)

11—20 of 349 matching pages

11: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
Table 26.4.1 gives numerical values of multinomials and partitions λ , M 1 , M 2 , M 3 for 1 m n 5 . …
Table 26.4.1: Multinomials and partitions.
n m λ M 1 M 2 M 3
5 1 5 1 1 24 1
5 2 1 1 , 4 1 5 30 5
5 2 2 1 , 3 1 10 20 10
5 5 1 5 120 1 1
12: 26.3 Lattice Paths: Binomial Coefficients
Table 26.3.1: Binomial coefficients ( m n ) .
m n
5 1 5 10 10 5 1
Table 26.3.2: Binomial coefficients ( m + n m ) for lattice paths.
m n
0 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8 9
4 1 5 15 35 70 126 210 330 495
5 1 6 21 56 126 252 462 792 1287
13: 6.19 Tables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 14: 3.4 Differentiation
    B 1 6 = 1 48 ( 36 72 t 39 t 2 + 52 t 3 + 5 t 4 6 t 5 ) ,
    B 1 6 = 1 48 ( 36 + 72 t 39 t 2 52 t 3 + 5 t 4 + 6 t 5 ) ,
    B 3 7 = 1 5040 ( 48 56 t 168 t 2 + 140 t 3 + 35 t 4 42 t 5 + 7 t 6 ) ,
    B 1 7 = 1 240 ( 144 360 t 48 t 2 + 260 t 3 45 t 4 30 t 5 + 7 t 6 ) ,
    B 3 7 = 1 720 ( 48 + 8 t 192 t 2 20 t 3 + 85 t 4 + 6 t 5 7 t 6 ) ,
    15: 30.9 Asymptotic Approximations and Expansions
    8 β 0 = 8 m 2 q 2 5 ,
    2 10 β 2 = 5 ( q 4 + 26 q 2 + 21 ) + 384 m 2 ( q 2 + 1 ) ,
    2 14 β 3 = 33 q 5 1594 q 3 5621 q + 128 m 2 ( 37 q 3 + 167 q ) 2048 m 4 q .
    2 20 β 5 = 527 q 7 61529 q 5 10 43961 q 3 22 41599 q + 32 m 2 ( 5739 q 5 + 1 27550 q 3 + 2 98951 q ) 2048 m 4 ( 355 q 3 + 1505 q ) + 65536 m 6 q .
    2 13 c 5 = 527 q 7 4139 q 5 5221 q 3 1009 q + m 2 ( 939 q 5 + 3750 q 3 + 1591 q ) m 4 ( 465 q 3 + 635 q ) + 53 m 6 q .
    16: 4.11 Sums
    For infinite series involving logarithms and/or exponentials, see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §44), and Prudnikov et al. (1986a, Chapter 5).
    17: 4.27 Sums
    For sums of trigonometric and inverse trigonometric functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §§14–42), Oberhettinger (1973), and Prudnikov et al. (1986a, Chapter 5).
    18: 4.24 Inverse Trigonometric Functions: Further Properties
    4.24.1 arcsin z = z + 1 2 z 3 3 + 1 3 2 4 z 5 5 + 1 3 5 2 4 6 z 7 7 + , | z | 1 .
    4.24.2 arccos z = ( 2 ( 1 z ) ) 1 / 2 ( 1 + n = 1 1 3 5 ( 2 n 1 ) 2 2 n ( 2 n + 1 ) n ! ( 1 z ) n ) , | 1 z | 2 .
    4.24.3 arctan z = z z 3 3 + z 5 5 z 7 7 + , | z | 1 , z ± i .
    4.24.4 arctan z = ± π 2 1 z + 1 3 z 3 1 5 z 5 + , z 0 , | z | 1 .
    4.24.5 arctan z = z z 2 + 1 ( 1 + 2 3 z 2 1 + z 2 + 2 4 3 5 ( z 2 1 + z 2 ) 2 + ) , ( z 2 ) > 1 2 ,
    19: 11.14 Tables
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 𝐇 n ( x ) , 𝐇 n ( x ) Y n ( x ) , and I n ( x ) 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .1 ) 5 , x 1 = 0 ( .01 ) 0.2 to 6D or 7D.

  • Agrest et al. (1982) tabulates 𝐇 n ( x ) and e x 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Barrett (1964) tabulates 𝐋 n ( x ) for n = 0 , 1 and x = 0.2 ( .005 ) 4 ( .05 ) 10 ( .1 ) 19.2 to 5 or 6S, x = 6 ( .25 ) 59.5 ( .5 ) 100 to 2S.

  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • Agrest et al. (1982) tabulates 0 x 𝐇 0 ( t ) d t and e x 0 x 𝐋 0 ( t ) d t for x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • 20: 12.19 Tables
  • Abramowitz and Stegun (1964, Chapter 19) includes U ( a , x ) and V ( a , x ) for ± a = 0 ( .1 ) 1 ( .5 ) 5 , x = 0 ( .1 ) 5 , 5S; W ( a , ± x ) for ± a = 0 ( .1 ) 1 ( 1 ) 5 , x = 0 ( .1 ) 5 , 4-5D or 4-5S.

  • Kireyeva and Karpov (1961) includes D p ( x ( 1 + i ) ) for ± x = 0 ( .1 ) 5 , p = 0 ( .1 ) 2 , and ± x = 5 ( .01 ) 10 , p = 0 ( .5 ) 2 , 7D.

  • Karpov and Čistova (1964) includes D p ( x ) for p = 2 ( .1 ) 0 , ± x = 0 ( .01 ) 5 ; p = 2 ( .05 ) 0 , ± x = 5 ( .01 ) 10 , 6D.

  • Karpov and Čistova (1968) includes e 1 4 x 2 D p ( x ) and e 1 4 x 2 D p ( i x ) for x = 0 ( .01 ) 5 and x 1 = 0(.001 or .0001)5, p = 1 ( .1 ) 1 , 7D or 8S.

  • Zhang and Jin (1996, pp. 455–473) includes U ( ± n 1 2 , x ) , V ( ± n 1 2 , x ) , U ( ± ν 1 2 , x ) , V ( ± ν 1 2 , x ) , and derivatives, ν = n + 1 2 , n = 0 ( 1 ) 10 ( 10 ) 30 , x = 0.5 , 1 , 5 , 10 , 30 , 50 , 8S; W ( a , ± x ) , W ( a , ± x ) , and derivatives, a = h ( 1 ) 5 + h , x = 0.5 , 1 and a = h ( 1 ) 5 + h , x = 5 , h = 0 , 0.5 , 8S. Also, first zeros of U ( a , x ) , V ( a , x ) , and of derivatives, a = 6 ( .5 ) 1 , 6D; first three zeros of W ( a , x ) and of derivative, a = 0 ( .5 ) 4 , 6D; first three zeros of W ( a , ± x ) and of derivative, a = 0.5 ( .5 ) 5.5 , 6D; real and imaginary parts of U ( a , z ) , a = 1.5 ( 1 ) 1.5 , z = x + i y , x = 0.5 , 1 , 5 , 10 , y = 0 ( .5 ) 10 , 8S.