About the Project

spectral%20methods

AdvancedHelp

(0.002 seconds)

10 matching pages

1: Bibliography
  • J. C. Adams and P. N. Swarztrauber (1997) SPHEREPACK 2.0: A Model Development Facility. NCAR Technical Note Technical Report TN-436-STR, National Center for Atmospheric Research.
  • A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S. Abdelmonem (Eds.) (2008) The J -Matrix Method. Developments and Applications. Springer-Verlag.
  • G. E. Andrews (1996) Pfaff’s method II: Diverse applications. J. Comput. Appl. Math. 68 (1-2), pp. 15–23.
  • T. M. Apostol and H. S. Zuckerman (1951) On magic squares constructed by the uniform step method. Proc. Amer. Math. Soc. 2 (4), pp. 557–565.
  • G. B. Arfken and H. J. Weber (2005) Mathematical Methods for Physicists. 6th edition, Elsevier, Oxford.
  • 2: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • P. L. Marston (1992) Geometrical and Catastrophe Optics Methods in Scattering. In Physical Acoustics, A. D. Pierce and R. N. Thurston (Eds.), Vol. 21, pp. 1–234.
  • J. M. McNamee (2007) Numerical Methods for Roots of Polynomials. Part I. Studies in Computational Mathematics, Vol. 14, Elsevier, Amsterdam.
  • V. Meden and K. Schönhammer (1992) Spectral functions for the Tomonaga-Luttinger model. Phys. Rev. B 46 (24), pp. 15753–15760.
  • S. L. B. Moshier (1989) Methods and Programs for Mathematical Functions. Ellis Horwood Ltd., Chichester.
  • 3: Bibliography K
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • J. P. Keating (1999) Periodic Orbits, Spectral Statistics, and the Riemann Zeros. In Supersymmetry and Trace Formulae: Chaos and Disorder, J. P. Keating, D. E. Khmelnitskii, and I. V. Lerner (Eds.), pp. 1–15.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • M. K. Kerimov (1999) The Rayleigh function: Theory and computational methods. Zh. Vychisl. Mat. Mat. Fiz. 39 (12), pp. 1962–2006.
  • A. D. Kerr (1978) An indirect method for evaluating certain infinite integrals. Z. Angew. Math. Phys. 29 (3), pp. 380–386.
  • 4: 18.39 Applications in the Physical Sciences
    §18.39(iii) Non Classical Weight Functions of Utility in DVR Method in the Physical Sciences
    Shizgal (2015) gives a broad overview of techniques and applications of spectral and pseudo-spectral methods to problems arising in theoretical chemistry, chemical kinetics, transport theory, and astrophysics. … Shizgal (2015, Chapter 2), contains a broad-ranged discussion of methods and applications for these, and other, non-classical weight functions. …
    §18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods
    The technique to accomplish this follows the DVR idea, in which methods are based on finding tridiagonal representations of the co-ordinate, x . …
    5: Bibliography G
  • J. S. Geronimo, O. Bruno, and W. Van Assche (2004) WKB and turning point theory for second-order difference equations. In Spectral Methods for Operators of Mathematical Physics, Oper. Theory Adv. Appl., Vol. 154, pp. 101–138.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • D. Gottlieb and S. A. Orszag (1977) Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • B. Guo (1998) Spectral Methods and Their Applications. World Scientific Publishing Co. Inc., River Edge, NJ-Singapore.
  • 6: Bibliography D
  • P. J. Davis and P. Rabinowitz (1984) Methods of Numerical Integration. 2nd edition, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL.
  • N. G. de Bruijn (1961) Asymptotic Methods in Analysis. 2nd edition, Bibliotheca Mathematica, Vol. IV, North-Holland Publishing Co., Amsterdam.
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • N. Dunford and J. T. Schwartz (1988) Linear operators. Part II. Wiley Classics Library, John Wiley & Sons, Inc., New York.
  • 7: Bibliography R
  • M. Reed and B. Simon (1975) Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis, Self-Adjointness. Academic Press, New York.
  • M. Reed and B. Simon (1978) Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators. Academic Press, New York.
  • M. Reed and B. Simon (1979) Methods of Modern Mathematical Physics, Vol. 3, Scattering Theory. Academic Press, New York.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • 8: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens and M. Branders (1983) Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT 23 (3), pp. 370–381.
  • A. Poquérusse and S. Alexiou (1999) Fast analytic formulas for the modified Bessel functions of imaginary order for spectral line broadening calculations. J. Quantit. Spec. and Rad. Trans. 62 (4), pp. 389–395.
  • M. Puoskari (1988) A method for computing Bessel function integrals. J. Comput. Phys. 75 (2), pp. 334–344.
  • 9: Bibliography S
  • B. Shizgal (2015) Spectral Methods in Chemistry and Physics. Applications to Kinetic Theory and Quantum Mechanics. Scientific Computation, Springer-Verlag, Dordrecht.
  • B. Simon (2005b) Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI.
  • B. Simon (2011) Szegő’s Theorem and Its Descendants. Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. M. B. Porter Lectures, Princeton University Press, Princeton, NJ.
  • B. D. Sleeman (1978) Multiparameter spectral theory in Hilbert space. Research Notes in Mathematics, Vol. 22, Pitman (Advanced Publishing Program), Boston, Mass.-London.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • 10: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • M. V. Berry and J. P. Keating (1992) A new asymptotic representation for ζ ( 1 2 + i t ) and quantum spectral determinants. Proc. Roy. Soc. London Ser. A 437, pp. 151–173.
  • Å. Björck (1996) Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.