About the Project

small x

AdvancedHelp

(0.005 seconds)

31—40 of 102 matching pages

31: 8.11 Asymptotic Approximations and Expansions
8.11.6 γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 δ .
8.11.7 Γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 δ .
32: 9.12 Scorer Functions
9.12.30 0 z Gi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π 1 π k = 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ .
9.12.31 0 z Hi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π + 1 π k = 1 ( 1 ) k 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 2 3 π δ ,
33: 7.1 Special Notation
x real variable.
δ arbitrary small positive constant.
The main functions treated in this chapter are the error function erf z ; the complementary error functions erfc z and w ( z ) ; Dawson’s integral F ( z ) ; the Fresnel integrals ( z ) , C ( z ) , and S ( z ) ; the Goodwin–Staton integral G ( z ) ; the repeated integrals of the complementary error function i n erfc ( z ) ; the Voigt functions 𝖴 ( x , t ) and 𝖵 ( x , t ) . …
34: 10.1 Special Notation
m , n integers. In §§10.4710.71 n is nonnegative.
x , y real variables.
δ arbitrary small positive constant.
ψ ( x ) Γ ( x ) / Γ ( x ) : logarithmic derivative of the gamma function (§5.2(i)).
The main functions treated in this chapter are the Bessel functions J ν ( z ) , Y ν ( z ) ; Hankel functions H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) ; modified Bessel functions I ν ( z ) , K ν ( z ) ; spherical Bessel functions 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , 𝗁 n ( 2 ) ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , 𝗄 n ( z ) ; Kelvin functions ber ν ( x ) , bei ν ( x ) , ker ν ( x ) , kei ν ( x ) . …
35: 12.14 The Function W ( a , x )
For the modulus functions F ~ ( a , x ) and G ~ ( a , x ) see §12.14(x). … Here w 1 ( a , x ) and w 2 ( a , x ) are the even and odd solutions of (12.2.3): … When x > 0 Then as x In the following expansions, obtained from Olver (1959), μ is large and positive, and δ is again an arbitrary small positive constant. …
36: 18.28 Askey–Wilson Class
18.28.19 R n ( x ) = R n ( x ; α , β , γ , δ | q ) = = 0 n q ( q n , α β q n + 1 ; q ) ( α q , β δ q , γ q , q ; q ) j = 0 1 ( 1 q j x + γ δ q 2 j + 1 ) = ϕ 3 4 ( q n , α β q n + 1 , q y , γ δ q y + 1 α q , β δ q , γ q ; q , q ) , α q , β δ q , or γ q = q N ; n = 0 , 1 , , N .
18.28.20 y = 0 N R n ( q y + γ δ q y + 1 ) R m ( q y + γ δ q y + 1 ) ω y = h n δ n , m , n , m = 0 , 1 , , N ,
18.28.23 R n ( q y + γ δ q y + 1 ; α , β , γ , δ | q ) = R y ( q n + α β q n + 1 ; γ , δ , α , β | q ) , α q , β δ q , or γ q = q N ; n , y = 0 , 1 , , N .
18.28.34 lim q 1 R n ( q y + q y + γ + δ + 1 ; q α , q β , q γ , q δ | q ) = R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) .
37: 1.5 Calculus of Two or More Variables
Suppose also that c d f ( x , y ) d y converges and c d ( f / x ) d y converges uniformly on a x b , that is, given any positive number ϵ , however small, we can find a number c 0 [ c , d ) that is independent of x and is such that …
38: 18.15 Asymptotic Approximations
18.15.7 ε M ( ρ , θ ) = { θ O ( ρ 2 M ( 3 / 2 ) ) , c ρ 1 θ π δ , θ α + ( 5 / 2 ) O ( ρ 2 M + α ) , 0 θ c ρ 1 ,
For more powerful asymptotic expansions as n in terms of elementary functions that apply uniformly when 1 + δ t < , 1 + δ t 1 δ , or < t 1 δ , where t = x / 2 n + 1 and δ is again an arbitrary small positive constant, see §§12.10(i)12.10(iv) and 12.10(vi). …
39: 11.1 Special Notation
x real variable.
δ arbitrary small positive constant.
40: 10.7 Limiting Forms
10.7.6 Y i ν ( z ) = i csch ( ν π ) Γ ( 1 i ν ) ( 1 2 z ) i ν i coth ( ν π ) Γ ( 1 + i ν ) ( 1 2 z ) i ν + e | ν ph z | o ( 1 ) , ν and ν 0 .
See also §10.24 when z = x ( > 0 ) . …