About the Project

scaled

AdvancedHelp

(0.001 seconds)

31—40 of 61 matching pages

31: 5.23 Approximations
See Schmelzer and Trefethen (2007) for a survey of rational approximations to various scaled versions of Γ ( z ) . …
32: 7.18 Repeated Integrals of the Complementary Error Function
See accompanying text
Figure 7.18.1: Repeated integrals of the scaled complementary error function 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 0 , 1 , 2 , 4 , 8 , 16 . Magnify
33: 10.16 Relations to Other Functions
With 𝐅 as in §15.2(i), and with z and ν fixed,
10.16.10 J ν ( z ) = ( 1 2 z ) ν lim 𝐅 ( λ , μ ; ν + 1 ; z 2 / ( 4 λ μ ) ) ,
34: Philip J. Davis
The surface color map can be changed from height-based to phase-based for complex valued functions, and density plots can be generated through strategic scaling. …
35: 19.16 Definitions
19.16.1 R F ( x , y , z ) = 1 2 0 d t s ( t ) ,
19.16.2 R J ( x , y , z , p ) = 3 2 0 d t s ( t ) ( t + p ) ,
19.16.2_5 R G ( x , y , z ) = 1 4 0 1 s ( t ) ( x t + x + y t + y + z t + z ) t d t .
19.16.4 s ( t ) = t + x t + y t + z .
19.16.5 R D ( x , y , z ) = R J ( x , y , z , z ) = 3 2 0 d t s ( t ) ( t + z ) ,
36: 21.9 Integrable Equations
All quantities are made dimensionless by a suitable scaling transformation. …
37: Mathematical Introduction
For example, for the hypergeometric function we often use the notation 𝐅 ( a , b ; c ; z ) 15.2(i)) in place of the more conventional F 1 2 ( a , b ; c ; z ) or F ( a , b ; c ; z ) . This is because 𝐅 is akin to the notation used for Bessel functions (§10.2(ii)), inasmuch as 𝐅 is an entire function of each of its parameters a , b , and c :​ this results in fewer restrictions and simpler equations. …
38: 3.10 Continued Fractions
However, this may be unstable; also overflow and underflow may occur when evaluating A n and B n (making it necessary to re-scale from time to time). … In contrast to the preceding algorithms in this subsection no scaling problems arise and no a priori information is needed. … Again, no scaling problems arise and no a priori information is needed. …
39: 10.22 Integrals
10.22.49 0 t μ 1 e a t J ν ( b t ) d t = ( 1 2 b ) ν a μ + ν Γ ( μ + ν ) 𝐅 ( μ + ν 2 , μ + ν + 1 2 ; ν + 1 ; b 2 a 2 ) , ( μ + ν ) > 0 , ( a ± i b ) > 0 ,
10.22.50 0 t μ 1 e a t Y ν ( b t ) d t = cot ( ν π ) ( 1 2 b ) ν Γ ( μ + ν ) ( a 2 + b 2 ) 1 2 ( μ + ν ) 𝐅 ( μ + ν 2 , 1 μ + ν 2 ; ν + 1 ; b 2 a 2 + b 2 ) csc ( ν π ) ( 1 2 b ) ν Γ ( μ ν ) ( a 2 + b 2 ) 1 2 ( μ ν ) 𝐅 ( μ ν 2 , 1 μ ν 2 ; 1 ν ; b 2 a 2 + b 2 ) , μ > | ν | , ( a ± i b ) > 0 .
For the hypergeometric function 𝐅 see §15.2(i). …
10.22.56 0 J μ ( a t ) J ν ( b t ) t λ d t = a μ Γ ( 1 2 ν + 1 2 μ 1 2 λ + 1 2 ) 2 λ b μ λ + 1 Γ ( 1 2 ν 1 2 μ + 1 2 λ + 1 2 ) 𝐅 ( 1 2 ( μ + ν λ + 1 ) , 1 2 ( μ ν λ + 1 ) ; μ + 1 ; a 2 b 2 ) , 0 < a < b , ( μ + ν + 1 ) > λ > 1 .
10.22.64 0 J μ + 2 n + 1 ( a t ) J μ ( b t ) d t = { b μ Γ ( μ + n + 1 ) a μ + 1 n ! 𝐅 ( n , μ + n + 1 ; μ + 1 ; b 2 a 2 ) , 0 < b < a , ( 1 ) n / ( 2 a ) , b = a ( > 0 ) , 0 , 0 < a < b .
40: 16.2 Definition and Analytic Properties
16.2.5 𝐅 q p ( 𝐚 ; 𝐛 ; z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) / ( Γ ( b 1 ) Γ ( b q ) ) = k = 0 ( a 1 ) k ( a p ) k Γ ( b 1 + k ) Γ ( b q + k ) z k k ! ;