About the Project

relation to generalized hypergeometric functions

AdvancedHelp

(0.024 seconds)

31—40 of 74 matching pages

31: 14.5 Special Values
§14.5 Special Values
โ–บ
14.5.1 ๐–ฏ ฮฝ ฮผ โก ( 0 ) = 2 ฮผ โข ฯ€ 1 / 2 ฮ“ โก ( 1 2 โข ฮฝ 1 2 โข ฮผ + 1 ) โข ฮ“ โก ( 1 2 1 2 โข ฮฝ 1 2 โข ฮผ ) ,
โ–บ
§14.5(v) ฮผ = 0 , ฮฝ = ± 1 2
โ–บโ–บ
§14.5(vi) Addendum to §14.5(ii) ฮผ = 0 , ฮฝ = 2
32: 18.17 Integrals
โ–บ
18.17.34_5 0 e x โข z โข L m ( ฮฑ ) โก ( x ) โข L n ( ฮฑ ) โก ( x ) โข e x โข x ฮฑ โข d x = ฮ“ โก ( ฮฑ + m + 1 ) โข ฮ“ โก ( ฮฑ + n + 1 ) ฮ“ โก ( ฮฑ + 1 ) โข m ! โข n ! โข z m + n ( z + 1 ) ฮฑ + m + n + 1 โข F 1 2 โก ( m , n ฮฑ + 1 ; z 2 ) , โก z > 1 .
33: 19.25 Relations to Other Functions
§19.25 Relations to Other Functions
โ–บ
§19.25(iv) Theta Functions
โ–บโ–บ
§19.25(vii) Hypergeometric Function
โ–บ
34: Bibliography S
โ–บ
  • L. J. Slater (1966) Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.
  • โ–บ
  • D. Slepian (1964) Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43, pp. 3009–3057.
  • โ–บ
  • F. C. Smith (1939b) Relations among the fundamental solutions of the generalized hypergeometric equation when p = q + 1 . II. Logarithmic cases. Bull. Amer. Math. Soc. 45 (12), pp. 927–935.
  • โ–บ
  • C. Snow (1952) Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D.C..
  • โ–บ
  • K. Srinivasa Rao (1981) Computation of angular momentum coefficients using sets of generalized hypergeometric functions. Comput. Phys. Comm. 22 (2-3), pp. 297–302.
  • 35: 3.10 Continued Fractions
    โ–บ
    §3.10(ii) Relations to Power Series
    โ–บ
    Stieltjes Fractions
    โ–บFor applications to Bessel functions and Whittaker functions (Chapters 10 and 13), see Gargantini and Henrici (1967). … โ–บFor special functions see §5.10 (gamma function), §7.9 (error function), §8.9 (incomplete gamma functions), §8.17(v) (incomplete beta function), §8.19(vii) (generalized exponential integral), §§10.10 and 10.33 (quotients of Bessel functions), §13.6 (quotients of confluent hypergeometric functions), §13.19 (quotients of Whittaker functions), and §15.7 (quotients of hypergeometric functions). … โ–บThis forward algorithm achieves efficiency and stability in the computation of the convergents C n = A n / B n , and is related to the forward series recurrence algorithm. …
    36: 16.23 Mathematical Applications
    §16.23 Mathematical Applications
    โ–บThese equations are frequently solvable in terms of generalized hypergeometric functions, and the monodromy of generalized hypergeometric functions plays an important role in describing properties of the solutions. … โ–บ
    §16.23(ii) Random Graphs
    โ–บ
    §16.23(iv) Combinatorics and Number Theory
    37: 13.31 Approximations
    §13.31 Approximations
    โ–บ
    §13.31(i) Chebyshev-Series Expansions
    โ–บLuke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M โก ( a , b , x ) and U โก ( a , b , x ) that include the intervals 0 x ฮฑ and ฮฑ x < , respectively, where ฮฑ is an arbitrary positive constant. … โ–บFor a discussion of the convergence of the Padé approximants that are related to the continued fraction (13.5.1) see Wimp (1985). … โ–บ
    38: 16.3 Derivatives and Contiguous Functions
    โ–บ
    §16.3(i) Differentiation Formulas
    โ–บ
    §16.3(ii) Contiguous Functions
    โ–บTwo generalized hypergeometric functions F q p โก ( ๐š ; ๐› ; z ) are (generalized) contiguous if they have the same pair of values of p and q , and corresponding parameters differ by integers. If p q + 1 , then any q + 2 distinct contiguous functions are linearly related. Examples are provided by the following recurrence relations: …
    39: 33.23 Methods of Computation
    โ–บ
    §33.23(i) Methods for the Confluent Hypergeometric Functions
    โ–บThe methods used for computing the Coulomb functions described below are similar to those in §13.29. … โ–บ
    §33.23(iv) Recurrence Relations
    โ–บIn a similar manner to §33.23(iii) the recurrence relations of §§33.4 or 33.17 can be used for a range of values of the integer โ„“ , provided that the recurrence is carried out in a stable direction (§3.6). … โ–บCurtis (1964a, §10) describes the use of series, radial integration, and other methods to generate the tables listed in §33.24. …
    40: Bibliography C
    โ–บ
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • โ–บ
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n ฮฑ โข ( x )  as the index ฮฑ  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • โ–บ
  • B. C. Carlson (2006b) Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R -functions. Math. Comp. 75 (255), pp. 1309–1318.
  • โ–บ
  • F. Chapeau-Blondeau and A. Monir (2002) Numerical evaluation of the Lambert W function and application to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50 (9), pp. 2160–2165.
  • โ–บ
  • W. J. Cody (1991) Performance evaluation of programs related to the real gamma function. ACM Trans. Math. Software 17 (1), pp. 46–54.