About the Project

periodic solutions

AdvancedHelp

(0.002 seconds)

21—28 of 28 matching pages

21: 18.39 Applications in the Physical Sciences
Thus the overall degeneracy of the solutions (18.39.29) (the number of independent eigenfunctions corresponding to a single eigenvalue (18.39.31) for all values of l and m l ) consistent with each n is n 2 , which controls the lengths of the rows in the Periodic Table. …
22: Bibliography
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • H. Airault (1979) Rational solutions of Painlevé equations. Stud. Appl. Math. 61 (1), pp. 31–53.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • F. M. Arscott (1964b) Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions. International Series of Monographs in Pure and Applied Mathematics, Vol. 66, Pergamon Press, The Macmillan Co., New York.
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 23: 31.2 Differential Equations
    §31.2(iv) Doubly-Periodic Forms
    Jacobi’s Elliptic Form
    Weierstrass’s Form
    w ( z ) = z 1 γ w 1 ( z ) satisfies (31.2.1) if w 1 is a solution of (31.2.1) with transformed parameters q 1 = q + ( a δ + ϵ ) ( 1 γ ) ; α 1 = α + 1 γ , β 1 = β + 1 γ , γ 1 = 2 γ . … If z ~ = z ~ ( z ) is one of the 3 ! = 6 homographies that map to , then w ( z ) = w ~ ( z ~ ) satisfies (31.2.1) if w ~ ( z ~ ) is a solution of (31.2.1) with z replaced by z ~ and appropriately transformed parameters. …
    24: Mathematical Introduction
    The mathematical content of the NIST Handbook of Mathematical Functions has been produced over a ten-year period. … These include, for example, multivalued functions of complex variables, for which new definitions of branch points and principal values are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or delta function), which is introduced in a more readily comprehensible way for mathematicians (§1.17); numerically satisfactory solutions of differential and difference equations (§§2.7(iv), 2.9(i)); and numerical analysis for complex variables (Chapter 3). …
    25: Bibliography B
  • P. Berglund, P. Candelas, X. de la Ossa, and et al. (1994) Periods for Calabi-Yau and Landau-Ginzburg vacua. Nuclear Phys. B 419 (2), pp. 352–403.
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • M. Brack, M. Mehta, and K. Tanaka (2001) Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems. J. Phys. A 34 (40), pp. 8199–8220.
  • J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001) Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E (3) 63 (036612), pp. 1–11.
  • 26: Bibliography H
  • J. Hammack, D. McCallister, N. Scheffner, and H. Segur (1995) Two-dimensional periodic waves in shallow water. II. Asymmetric waves. J. Fluid Mech. 285, pp. 95–122.
  • J. Hammack, N. Scheffner, and H. Segur (1989) Two-dimensional periodic waves in shallow water. J. Fluid Mech. 209, pp. 567–589.
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • M. Heil (1995) Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems. Ph.D. Thesis, Technischen Universität Berlin.
  • M. Hoyles, S. Kuyucak, and S. Chung (1998) Solutions of Poisson’s equation in channel-like geometries. Comput. Phys. Comm. 115 (1), pp. 45–68.
  • 27: Bibliography C
  • J. Camacho, R. Guimerà, and L. A. N. Amaral (2002) Analytical solution of a model for complex food webs. Phys. Rev. E 65 (3), pp. (030901–1)–(030901–4).
  • L. D. Carr, C. W. Clark, and W. P. Reinhardt (2000) Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A 62 (063610), pp. 1–10.
  • P. A. Clarkson (1991) Nonclassical Symmetry Reductions and Exact Solutions for Physically Significant Nonlinear Evolution Equations. In Nonlinear and Chaotic Phenomena in Plasmas, Solids and Fluids (Edmonton, AB, 1990), W. Rozmus and J. A. Tuszynski (Eds.), pp. 72–79.
  • P. A. Clarkson (2005) Special polynomials associated with rational solutions of the fifth Painlevé equation. J. Comput. Appl. Math. 178 (1-2), pp. 111–129.
  • A. R. Curtis (1964b) Tables of Jacobian Elliptic Functions Whose Arguments are Rational Fractions of the Quarter Period. National Physical Laboratory Mathematical Tables, Vol. 7, Her Majesty’s Stationery Office, London.
  • 28: Bibliography G
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • P. Gianni, M. Seppälä, R. Silhol, and B. Trager (1998) Riemann surfaces, plane algebraic curves and their period matrices. J. Symbolic Comput. 26 (6), pp. 789–803.
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • A. Gil, J. Segura, and N. M. Temme (2007b) Numerically satisfactory solutions of hypergeometric recursions. Math. Comp. 76 (259), pp. 1449–1468.
  • A. Gil and J. Segura (2003) Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41 (3), pp. 827–855.