About the Project

maximum modulus

AdvancedHelp

(0.000 seconds)

31—40 of 47 matching pages

31: Bibliography F
β–Ί
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • β–Ί
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ⁒ ( z ) = e z 2 ⁒ ( 1 + 2 ⁒ i ⁒ Ο€ 1 / 2 ⁒ 0 z e t 2 ⁒ 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • H. E. Fettis (1970) On the reciprocal modulus relation for elliptic integrals. SIAM J. Math. Anal. 1 (4), pp. 524–526.
  • 32: 19.28 Integrals of Elliptic Integrals
    β–Ί
    19.28.4 0 1 t Οƒ 1 ⁒ ( 1 t ) c 1 ⁒ R a ⁑ ( b 1 , b 2 ; t , 1 ) ⁒ d t = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( Οƒ ) ⁒ Ξ“ ⁑ ( Οƒ + b 2 a ) Ξ“ ⁑ ( Οƒ + c a ) ⁒ Ξ“ ⁑ ( Οƒ + b 2 ) , c = b 1 + b 2 > 0 , ⁑ Οƒ > max ⁑ ( 0 , a b 2 ) .
    β–Ί
    19.28.9 0 Ο€ / 2 R F ⁑ ( sin 2 ⁑ ΞΈ ⁒ cos 2 ⁑ ( x + y ) , sin 2 ⁑ ΞΈ ⁒ cos 2 ⁑ ( x y ) , 1 ) ⁒ d ΞΈ = R F ⁑ ( 0 , cos 2 ⁑ x , 1 ) ⁒ R F ⁑ ( 0 , cos 2 ⁑ y , 1 ) ,
    33: 28.22 Connection Formulas
    β–Ί
    28.22.9 f e , m ⁑ ( h ) = Ο€ / 2 ⁒ g e , m ⁑ ( h ) ⁒ Mc m ( 2 ) ⁑ ( 0 , h ) ,
    β–Ί
    28.22.10 f o , m ⁑ ( h ) = Ο€ / 2 ⁒ g o , m ⁑ ( h ) ⁒ Ms m ( 2 ) ⁑ ( 0 , h ) ,
    β–Ί
    Mc m ( 2 ) ⁑ ( 0 , h ) = 2 / Ο€ ⁒ g e , m ⁑ ( h ) ,
    β–Ί
    Ms m ( 2 ) ⁑ ( 0 , h ) = 2 / Ο€ ⁒ g o , m ⁑ ( h ) ,
    β–ΊHere me Ξ½ ⁑ ( 0 , h 2 ) ( 0 ) is given by (28.14.1) with z = 0 , and M Ξ½ ( 1 ) ⁑ ( 0 , h ) is given by (28.24.1) with j = 1 , z = 0 , and n chosen so that | c 2 ⁒ n Ξ½ ⁑ ( h 2 ) | = max ⁑ ( | c 2 ⁒ β„“ Ξ½ ⁑ ( h 2 ) | ) , where the maximum is taken over all integers β„“ . …
    34: 3.3 Interpolation
    β–Ί
    3.3.12 c n = 1 ( n + 1 ) ! ⁒ max ⁒ k = n 0 n 1 | t k | ,
    β–Ίwhere the maximum is taken over t -intervals given in the formulas below. … β–Ί
    [ z 0 , z 1 ] ⁑ f = ( [ z 1 ] ⁑ f [ z 0 ] ⁑ f ) / ( z 1 z 0 ) ,
    β–ΊFor example, for k + 1 coincident points the limiting form is given by [ z 0 , z 0 , , z 0 ] ⁑ f = f ( k ) ⁒ ( z 0 ) / k ! . … β–Ί
    3.3.44 S ⁑ ( k , h ) ⁒ ( x ) = sin ⁑ ( Ο€ ⁒ ( x k ⁒ h ) / h ) Ο€ ⁒ ( x k ⁒ h ) / h ,
    35: Errata
    β–Ί
  • Section 11.11

    The asymptotic results were originally for Ξ½ real valued and Ξ½ + . However, these results are also valid for complex values of Ξ½ . The maximum sectors of validity are now specified.

  • β–Ί
  • Equation (19.7.2)

    The second and the fourth lines containing k / i ⁒ k have both been replaced with i ⁒ k / k to clarify the meaning.

  • β–Ί
  • Equation (9.10.18)
    9.10.18 Ai ⁑ ( z ) = 3 ⁒ z 5 / 4 ⁒ e ( 2 / 3 ) ⁒ z 3 / 2 4 ⁒ Ο€ ⁒ 0 t 3 / 4 ⁒ e ( 2 / 3 ) ⁒ t 3 / 2 ⁒ Ai ⁑ ( t ) z 3 / 2 + t 3 / 2 ⁒ d t

    The original equation taken from Schulten et al. (1979) was incorrect.

    Reported 2015-03-20 by Walter Gautschi.

  • β–Ί
  • Equation (9.10.19)
    9.10.19 Bi ⁑ ( x ) = 3 ⁒ x 5 / 4 ⁒ e ( 2 / 3 ) ⁒ x 3 / 2 2 ⁒ Ο€ ⁒ ⨍ 0 t 3 / 4 ⁒ e ( 2 / 3 ) ⁒ t 3 / 2 ⁒ Ai ⁑ ( t ) x 3 / 2 t 3 / 2 ⁒ d t

    The original equation taken from Schulten et al. (1979) was incorrect.

    Reported 2015-03-20 by Walter Gautschi.

  • β–Ί
  • Table 22.5.2

    The entry for sn ⁑ z at z = 3 2 ⁒ ( K + i ⁒ K ) has been corrected. The correct entry is ( 1 + i ) ⁒ ( ( 1 + k ) 1 / 2 i ⁒ ( 1 k ) 1 / 2 ) / ( 2 ⁒ k 1 / 2 ) . Originally the terms ( 1 + k ) 1 / 2 and ( 1 k ) 1 / 2 were given incorrectly as ( 1 + k ) 1 / 2 and ( 1 k ) 1 / 2 .

    Similarly, the entry for dn ⁑ z at z = 3 2 ⁒ ( K + i ⁒ K ) has been corrected. The correct entry is ( 1 + i ) ⁒ k 1 / 2 ⁒ ( ( 1 + k ) 1 / 2 + i ⁒ ( 1 k ) 1 / 2 ) / 2 . Originally the terms ( 1 + k ) 1 / 2 and ( 1 k ) 1 / 2 were given incorrectly as ( 1 + k ) 1 / 2 and ( 1 k ) 1 / 2

    Reported 2014-02-28 by Svante Janson.

  • 36: 29.5 Special Cases and Limiting Forms
    β–ΊLet ΞΌ = max ⁑ ( Ξ½ m , 0 ) . … β–Ί
    29.5.6 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) d 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) d 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) / d z | z = 0 = tanh ⁑ z ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ + 1 2 , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 3 2 ; tanh 2 ⁑ z ) , m odd,
    37: 3.5 Quadrature
    β–Ίwhere h = ( b a ) / n . …To generate G k ⁑ ( h ) the quantities G 0 ⁑ ( h ) , G 0 ⁑ ( h / 2 ) , , G 0 ⁑ ( h / 2 k ) are needed. … β–ΊComplex orthogonal polynomials p n ⁒ ( 1 / ΞΆ ) of degree n = 0 , 1 , 2 , , in 1 / ΞΆ that satisfy the orthogonality condition … β–ΊA frequent problem with contour integrals is heavy cancellation, which occurs especially when the value of the integral is exponentially small compared with the maximum absolute value of the integrand. To avoid cancellation we try to deform the path to pass through a saddle point in such a way that the maximum contribution of the integrand is derived from the neighborhood of the saddle point. …
    38: 3.11 Approximation Techniques
    β–ΊA sufficient condition for p n ⁑ ( x ) to be the minimax polynomial is that | Ο΅ n ⁑ ( x ) | attains its maximum at n + 2 distinct points in [ a , b ] and Ο΅ n ⁑ ( x ) changes sign at these consecutive maxima. … β–Ί(Thus the m j are approximations to m , where ± m is the maximum value of | Ο΅ n ⁑ ( x ) | on [ a , b ] .) … β–ΊMore precisely, it is known that for the interval [ a , b ] , the ratio of the maximum value of the remainder …to the maximum error of the minimax polynomial p n ⁑ ( x ) is bounded by 1 + L n , where L n is the n th Lebesgue constant for Fourier series; see §1.8(i). … β–Ίand ± m is the maximum of | Ο΅ k , β„“ ⁑ ( x ) | on [ a , b ] . …
    39: Bibliography Z
    β–Ί
  • S. Zhang and J. Jin (1996) Computation of Special Functions. John Wiley & Sons Inc., New York.
  • β–Ί
  • M. I. Ε½urina and L. N. Karmazina (1963) Tablitsy funktsii Lezhandra P 1 / 2 + i ⁒ Ο„ 1 ⁒ ( x ) . Vyčisl. Centr Akad. Nauk SSSR, Moscow.
  • β–Ί
  • M. I. Ε½urina and L. N. Karmazina (1964) Tables of the Legendre functions P 1 / 2 + i ⁒ Ο„ ⁒ ( x ) . Part I. Translated by D. E. Brown. Mathematical Tables Series, Vol. 22, Pergamon Press, Oxford.
  • β–Ί
  • M. I. Ε½urina and L. N. Karmazina (1965) Tables of the Legendre functions P 1 / 2 + i ⁒ Ο„ ⁒ ( x ) . Part II. Translated by Prasenjit Basu. Mathematical Tables Series, Vol. 38. A Pergamon Press Book, The Macmillan Co., New York.
  • β–Ί
  • M. I. Ε½urina and L. N. Karmazina (1966) Tables and formulae for the spherical functions P 1 / 2 + i ⁒ Ο„ m ⁒ ( z ) . Translated by E. L. Albasiny, Pergamon Press, Oxford.
  • 40: 1.14 Integral Transforms
    β–ΊIf ⁑ s > max ⁑ ( ⁑ ( a + Ξ± ) , Ξ± ) , then … β–ΊIf also lim t 0 + f ⁑ ( t ) / t exists, then … β–Ίwhere A p = tan ⁑ ( 1 2 ⁒ Ο€ / p ) when 1 < p 2 , or cot ⁑ ( 1 2 ⁒ Ο€ / p ) when p 2 . … β–Ί
    Table 1.14.3: Fourier sine transforms.
    β–Ί β–Ίβ–Ίβ–Ίβ–Ί
    f ⁑ ( t ) 2 Ο€ ⁒ 0 f ⁑ ( t ) ⁒ sin ⁑ ( x ⁒ t ) ⁒ d t , x > 0
    t 1 / 2 x 1 / 2
    t 3 / 2 2 ⁒ x 1 / 2
    β–Ί