About the Project

limit circle

AdvancedHelp

(0.002 seconds)

1—10 of 100 matching pages

1: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
By Weyl’s alternative n 1 equals either 1 (the limit point case) or 2 (the limit circle case), and similarly for n 2 . … A boundary value for the end point a is a linear form on 𝒟 ( ) of the form
1.18.71 ( f ) = lim x a + ( α ( x ) f ( x ) + β ( x ) f ( x ) ) , f 𝒟 ( ) ,
The above results, especially the discussions of deficiency indices and limit point and limit circle boundary conditions, lay the basis for further applications. … The materials developed here follow from the extensions of the Sturm–Liouville theory of second order ODEs as developed by Weyl, to include the limit point and limit circle singular cases. …
2: 4.31 Special Values and Limits
§4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
4.31.3 lim z 0 cosh z 1 z 2 = 1 2 .
3: 26.5 Lattice Paths: Catalan Numbers
§26.5(iv) Limiting Forms
26.5.7 lim n C ( n + 1 ) C ( n ) = 4 .
4: 35.2 Laplace Transform
Assume that 𝓢 | g ( 𝐔 + i 𝐕 ) | d 𝐕 converges, and also that its limit as 𝐔 is 0 . …
5: 4.17 Special Values and Limits
§4.17 Special Values and Limits
Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
θ sin θ cos θ tan θ csc θ sec θ cot θ
4.17.1 lim z 0 sin z z = 1 ,
4.17.2 lim z 0 tan z z = 1 .
4.17.3 lim z 0 1 cos z z 2 = 1 2 .
6: 10.34 Analytic Continuation
10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
10.34.4 K ν ( z e m π i ) = csc ( ν π ) ( ± sin ( m ν π ) K ν ( z e ± π i ) sin ( ( m 1 ) ν π ) K ν ( z ) ) .
If ν = n ( ) , then limiting values are taken in (10.34.2) and (10.34.4):
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
7: 26.10 Integer Partitions: Other Restrictions
§26.10(v) Limiting Form
26.10.16 p ( 𝒟 , n ) e π n / 3 ( 768 n 3 ) 1 / 4 , n .
26.10.17 p ( 𝒟 , n ) = π k = 1 A 2 k 1 ( n ) ( 2 k 1 ) 24 n + 1 I 1 ( π 2 k 1 24 n + 1 72 ) ,
8: 2.10 Sums and Sequences
(5.11.7) shows that the integrals around the large quarter circles vanish as n . …
  • (b´)

    On the circle | z | = r , the function f ( z ) g ( z ) has a finite number of singularities, and at each singularity z j , say,

    2.10.30 f ( z ) g ( z ) = O ( ( z z j ) σ j 1 ) , z z j ,

    where σ j is a positive constant.

  • The singularities of f ( z ) on the unit circle are branch points at z = e ± i α . To match the limiting behavior of f ( z ) at these points we set … For uniform expansions when two singularities coalesce on the circle of convergence see Wong and Zhao (2005). …
    9: 19.20 Special Cases
    19.20.2 0 1 d t 1 t 4 = R F ( 0 , 1 , 2 ) = ( Γ ( 1 4 ) ) 2 4 ( 2 π ) 1 / 2 = 1.31102 87771 46059 90523 .
    lim p 0 + p R J ( 0 , y , z , p ) = 3 π 2 y z ,
    lim p 0 R J ( 0 , y , z , p ) = R D ( 0 , y , z ) R D ( 0 , z , y ) = 6 y z R G ( 0 , y , z ) .
    19.20.12 lim p ± p R J ( x , y , z , p ) = 3 R F ( x , y , z ) .
    19.20.22 0 1 t 2 d t 1 t 4 = 1 3 R D ( 0 , 2 , 1 ) = ( Γ ( 3 4 ) ) 2 ( 2 π ) 1 / 2 = 0.59907 01173 67796 10371 .
    10: 18.11 Relations to Other Functions
    18.11.7 lim n ( 1 ) n n 1 2 2 2 n n ! H 2 n ( z 2 n 1 2 ) = 1 π 1 2 cos z ,
    18.11.8 lim n ( 1 ) n 2 2 n n ! H 2 n + 1 ( z 2 n 1 2 ) = 2 π 1 2 sin z .