DLMF
Index
Notations
Search
Help?
Citing
Customize
Annotate
UnAnnotate
About the Project
19
Elliptic Integrals
Legendre’s Integrals
19.3
Graphics
19.3
Graphics
19.4
Derivatives and Differential Equations
Figure 19.3.6
(See
in context
.)
Figure 19.3.6:
Π
(
ϕ
,
2
,
k
)
as a function of
k
2
and
sin
2
ϕ
for
−
1
≤
k
2
≤
3
,
0
≤
sin
2
ϕ
<
1
. Cauchy principal values are shown when
sin
2
ϕ
>
1
2
. The function tends to
+
∞
as
sin
2
ϕ
→
1
2
, except in the last case below. If
sin
2
ϕ
=
1
(
>
k
2
), then the function reduces to
Π
(
2
,
k
)
with Cauchy principal value
K
(
k
)
−
Π
(
1
2
k
2
,
k
)
, which tends to
−
∞
as
k
2
→
1
−
. See (
19.6.5
) and (
19.6.6
). If
sin
2
ϕ
=
1
/
k
2
(
<
1
), then by (
19.7.4
) it reduces to
Π
(
2
/
k
2
,
1
/
k
)
/
k
,
k
2
≠
2
, with Cauchy principal value
(
K
(
1
/
k
)
−
Π
(
1
2
,
1
/
k
)
)
/
k
,
1
<
k
2
<
2
, by (
19.6.5
). Its value tends to
−
∞
as
k
2
→
1
+
by (
19.6.6
), and to the negative of the second lemniscate constant (see (
19.20.22
)) as
k
2
(
=
csc
2
ϕ
)
→
2
−
.
ⓘ
Annotations:
Symbols:
K
(
k
)
: Legendre’s complete elliptic integral of the first kind
,
Π
(
α
2
,
k
)
: Legendre’s complete elliptic integral of the third kind
,
csc
z
: cosecant function
,
Π
(
ϕ
,
α
2
,
k
)
: Legendre’s incomplete elliptic integral of the third kind
,
sin
z
: sine function
,
ϕ
: real or complex argument
and
k
: real or complex modulus
Permalink:
http://dlmf.nist.gov/19.3.F6.viz
Viewpoint
Scale Figure
X
:
Y
:
Z
:
Cutting Control
x
y
z
clear
plane: