About the Project

isolated%20singularity

AdvancedHelp

(0.002 seconds)

1—10 of 174 matching pages

1: 1.10 Functions of a Complex Variable
Then z = z 0 is an isolated singularity of f ( z ) . …Lastly, if a n 0 for infinitely many negative n , then z 0 is an isolated essential singularity. … In any neighborhood of an isolated essential singularity, however small, an analytic function assumes every value in with at most one exception. …
2: 32.2 Differential Equations
be a nonlinear second-order differential equation in which F is a rational function of w and d w / d z , and is locally analytic in z , that is, analytic except for isolated singularities in . In general the singularities of the solutions are movable in the sense that their location depends on the constants of integration associated with the initial or boundary conditions. An equation is said to have the Painlevé property if all its solutions are free from movable branch points; the solutions may have movable poles or movable isolated essential singularities1.10(iii)), however. …
3: 31.13 Asymptotic Approximations
For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
4: 20 Theta Functions
Chapter 20 Theta Functions
5: 1.4 Calculus of One Variable
A removable singularity of f ( x ) at x = c occurs when f ( c + ) = f ( c ) but f ( c ) is undefined. … … Ismail (2005, p 5) refers to these x n as isolated atoms. …
6: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
Often circumstances allow rather stronger statements, such as uniform convergence, or pointwise convergence at points where f ( x ) is continuous, with convergence to ( f ( x 0 ) + f ( x 0 + ) ) / 2 if x 0 is an isolated point of discontinuity. … Should q ( x ) be bounded but random, leading to Anderson localization, the spectrum could range from being a dense point spectrum to being singular continuous, see Simon (1995), Avron and Simon (1982); a good general reference being Cycon et al. (2008, Ch. 9 and 10). … … For this latter see Simon (1973), and Reinhardt (1982); wherein advantage is taken of the fact that although branch points are actual singularities of an analytic function, the location of the branch cuts are often at our disposal, as they are not singularities of the function, but simply arbitrary lines to keep a function single valued, and thus only singularities of a specific representation of that analytic function. … The materials developed here follow from the extensions of the Sturm–Liouville theory of second order ODEs as developed by Weyl, to include the limit point and limit circle singular cases. …
7: Bibliography O
  • A. B. Olde Daalhuis and F. W. J. Olver (1994) Exponentially improved asymptotic solutions of ordinary differential equations. II Irregular singularities of rank one. Proc. Roy. Soc. London Ser. A 445, pp. 39–56.
  • A. B. Olde Daalhuis (1998a) Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one. Proc. Roy. Soc. London Ser. A 454, pp. 1–29.
  • F. W. J. Olver and F. Stenger (1965) Error bounds for asymptotic solutions of second-order differential equations having an irregular singularity of arbitrary rank. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 244–249.
  • F. W. J. Olver (1965) On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (2), pp. 225–243.
  • F. W. J. Olver (1997a) Asymptotic solutions of linear ordinary differential equations at an irregular singularity of rank unity. Methods Appl. Anal. 4 (4), pp. 375–403.
  • 8: Bibliography
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • V. I. Arnol’d, S. M. Guseĭn-Zade, and A. N. Varchenko (1988) Singularities of Differentiable Maps. Vol. II. Birkhäuser, Boston-Berlin.
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (4), pp. 3–25 (Russian).
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 9: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • P. Flajolet and A. Odlyzko (1990) Singularity analysis of generating functions. SIAM J. Discrete Math. 3 (2), pp. 216–240.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 10: 31.12 Confluent Forms of Heun’s Equation
    Confluent forms of Heun’s differential equation (31.2.1) arise when two or more of the regular singularities merge to form an irregular singularity. … This has regular singularities at z = 0 and 1 , and an irregular singularity of rank 1 at z = . … This has irregular singularities at z = 0 and , each of rank 1 . … This has a regular singularity at z = 0 , and an irregular singularity at of rank 2 . … This has one singularity, an irregular singularity of rank 3 at z = . …