About the Project

integral%20equation

AdvancedHelp

(0.002 seconds)

21—30 of 30 matching pages

21: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • A. Decarreau, M.-Cl. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux (1978a) Formes canoniques des équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (1-2), pp. 53–78.
  • A. Decarreau, P. Maroni, and A. Robert (1978b) Sur les équations confluentes de l’équation de Heun. Ann. Soc. Sci. Bruxelles Sér. I 92 (3), pp. 151–189.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 22: 12.10 Uniform Asymptotic Expansions for Large Parameter
    12.10.33 𝖠 s + 1 ( τ ) = 4 τ 2 ( τ + 1 ) 2 d d τ 𝖠 s ( τ ) 1 4 0 τ ( 20 u 2 + 20 u + 3 ) 𝖠 s ( u ) d u , s = 0 , 1 , 2 , ,
    𝖠 1 ( τ ) = 1 12 τ ( 20 τ 2 + 30 τ + 9 ) ,
    23: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • È. Ya. Riekstynš (1991) Asymptotics and Bounds of the Roots of Equations (Russian). Zinatne, Riga.
  • 24: 20.11 Generalizations and Analogs
    As in §20.11(ii), the modulus k of elliptic integrals19.2(ii)), Jacobian elliptic functions (§22.2), and Weierstrass elliptic functions (§23.6(ii)) can be expanded in q -series via (20.9.1). … The first of equations (20.9.2) can also be written … The importance of these combined theta functions is that sets of twelve equations for the theta functions often can be replaced by corresponding sets of three equations of the combined theta functions, plus permutation symmetry. Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …
    25: 25.11 Hurwitz Zeta Function
    See accompanying text
    Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
    §25.11(vii) Integral Representations
    §25.11(viii) Further Integral Representations
    §25.11(ix) Integrals
    26: 9.18 Tables
  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • §9.18(v) Integrals
    27: Bibliography P
  • P. Painlevé (1906) Sur les équations différentielles du second ordre à points critiques fixès. C.R. Acad. Sc. Paris 143, pp. 1111–1117.
  • R. B. Paris (1992a) Smoothing of the Stokes phenomenon for high-order differential equations. Proc. Roy. Soc. London Ser. A 436, pp. 165–186.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • G. Pólya (1949) Remarks on computing the probability integral in one and two dimensions. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, pp. 63–78.
  • W. H. Press and S. A. Teukolsky (1990) Elliptic integrals. Computers in Physics 4 (1), pp. 92–96.
  • 28: 25.12 Polylogarithms
    The remainder of the equations in this subsection apply to principal branches. … The right-hand side is called Clausen’s integral. …
    Integral Representation
    The Fermi–Dirac and Bose–Einstein integrals are defined by … In terms of polylogarithms …
    29: 19.36 Methods of Computation
    Legendre’s integrals can be computed from symmetric integrals by using the relations in §19.25(i). … Complete cases of Legendre’s integrals and symmetric integrals can be computed with quadratic convergence by the AGM method (including Bartky transformations), using the equations in §19.8(i) and §19.22(ii), respectively. … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … Numerical quadrature is slower than most methods for the standard integrals but can be useful for elliptic integrals that have complicated representations in terms of standard integrals. …
    30: 14.30 Spherical and Spheroidal Harmonics
    14.30.8 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) ¯ Y l 2 , m 2 ( θ , ϕ ) sin θ d θ d ϕ = δ l 1 , l 2 δ m 1 , m 2 .
    See also (34.3.22), and for further related integrals see Askey et al. (1986). … As an example, Laplace’s equation 2 W = 0 in spherical coordinates (§1.5(ii)): … In the quantization of angular momentum the spherical harmonics Y l , m ( θ , ϕ ) are normalized solutions of the eigenvalue equations
    14.30.11_5 L z Y l , m = m Y l , m , m = l , 1 + 1 , , 0 , , l 1 , l ,