About the Project

hypergeometric%20functions

AdvancedHelp

(0.004 seconds)

11—20 of 24 matching pages

11: Bibliography M
  • I. G. Macdonald (1990) Hypergeometric Functions.
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in 𝑆𝑈 ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • T. Morita (2013) A connection formula for the q -confluent hypergeometric function. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 050, 13.
  • 12: Bibliography O
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1991b) Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms. SIAM J. Math. Anal. 22 (5), pp. 1475–1489.
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.
  • 13: 6.20 Approximations
    §6.20(i) Approximations in Terms of Elementary Functions
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 14: Bibliography
  • J. Abad and J. Sesma (1995) Computation of the regular confluent hypergeometric function. The Mathematica Journal 5 (4), pp. 74–76.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992a) Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23 (2), pp. 512–524.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992b) Hypergeometric Functions and Elliptic Integrals. In Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (Eds.), pp. 48–85.
  • G. E. Andrews (1974) Applications of basic hypergeometric functions. SIAM Rev. 16 (4), pp. 441–484.
  • 15: 2.11 Remainder Terms; Stokes Phenomenon
    Here erfc is the complementary error function7.2(i)), and …Also, … Expansions similar to (2.11.15) can be constructed for many other special functions. … … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
    16: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley and J. Nayler (1935) A short table of the functions Ki n ( x ) , from n = 1 to n = 16 . Phil. Mag. Series 7 20, pp. 343–347.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • 17: Errata
  • Paragraph Confluent Hypergeometric Functions (in §7.18(iv))

    A note about the multivalued nature of the Kummer confluent hypergeometric function of the second kind U on the right-hand side of (7.18.10) was inserted.

  • Paragraph Confluent Hypergeometric Functions (in §10.16)

    Confluent hypergeometric functions were incorrectly linked to the definitions of the Kummer confluent hypergeometric and parabolic cylinder functions. However, to the eye, the functions appeared correct. The links were corrected.

  • Subsection 13.29(v)

    A new Subsection Continued Fractions, has been added to cover computation of confluent hypergeometric functions by continued fractions.

  • Subsection 15.19(v)

    A new Subsection Continued Fractions, has been added to cover computation of the Gauss hypergeometric functions by continued fractions.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • 18: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • G. Wei and B. E. Eichinger (1993) Asymptotic expansions of some matrix argument hypergeometric functions, with applications to macromolecules. Ann. Inst. Statist. Math. 45 (3), pp. 467–475.
  • J. Wimp (1965) On the zeros of a confluent hypergeometric function. Proc. Amer. Math. Soc. 16 (2), pp. 281–283.
  • J. Wimp (1968) Recursion formulae for hypergeometric functions. Math. Comp. 22 (102), pp. 363–373.
  • 19: Bibliography G
  • L. Gatteschi (1990) New inequalities for the zeros of confluent hypergeometric functions. In Asymptotic and computational analysis (Winnipeg, MB, 1989), pp. 175–192.
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • K. I. Gross and D. St. P. Richards (1987) Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Trans. Amer. Math. Soc. 301 (2), pp. 781–811.
  • K. I. Gross and D. St. P. Richards (1991) Hypergeometric functions on complex matrix space. Bull. Amer. Math. Soc. (N.S.) 24 (2), pp. 349–355.
  • 20: Bibliography P
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions. In Tracts for Computers, No. 1, K. Pearson (Ed.),
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • R. B. Paris (2013) Exponentially small expansions of the confluent hypergeometric functions. Appl. Math. Sci. (Ruse) 7 (133-136), pp. 6601–6609.
  • W. F. Perger, A. Bhalla, and M. Nardin (1993) A numerical evaluator for the generalized hypergeometric series. Comput. Phys. Comm. 77 (2), pp. 249–254.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.