About the Project

hyperbolic%20umbilic%20catastrophe

AdvancedHelp

(0.001 seconds)

21—30 of 230 matching pages

21: 36.9 Integral Identities
§36.9 Integral Identities
36.9.8 | Ψ ( H ) ( x , y , z ) | 2 = 8 π 2 ( 2 9 ) 1 / 3 Ai ( ( 4 3 ) 1 / 3 ( x + z v + 3 u 2 ) ) Ai ( ( 4 3 ) 1 / 3 ( y + z u + 3 v 2 ) ) d u d v .
36.9.9 | Ψ ( E ) ( x , y , z ) | 2 = 8 π 2 3 2 / 3 0 0 2 π ( Ai ( 1 3 1 / 3 ( x + i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) Bi ( 1 3 1 / 3 ( x i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) ) u d u d θ .
22: 4.32 Inequalities
§4.32 Inequalities
4.32.1 cosh x ( sinh x x ) 3 ,
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.3 | cosh x cosh y | | x y | sinh x sinh y , x > 0 , y > 0 ,
For these and other inequalities involving hyperbolic functions see Mitrinović (1964, pp. 61, 76, 159) and Mitrinović (1970, p. 270).
23: 4.31 Special Values and Limits
§4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
4.31.3 lim z 0 cosh z 1 z 2 = 1 2 .
24: 20.10 Integrals
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
25: 4.41 Sums
§4.41 Sums
For sums of hyperbolic functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §43), Prudnikov et al. (1986a, §5.3), and Zucker (1979).
26: 4.34 Derivatives and Differential Equations
§4.34 Derivatives and Differential Equations
4.34.4 d d z csch z = csch z coth z ,
4.34.5 d d z sech z = sech z tanh z ,
With a 0 , the general solutions of the differential equations …
27: 7.8 Inequalities
7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
7.8.7 sinh x 2 x < e x 2 F ( x ) = 0 x e t 2 d t < e x 2 1 x , x > 0 .
28: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • C. L. Frenzen (1990) Error bounds for a uniform asymptotic expansion of the Legendre function Q n m ( cosh z ) . SIAM J. Math. Anal. 21 (2), pp. 523–535.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 29: 36.12 Uniform Approximation of Integrals
    Define a mapping u ( t ; 𝐲 ) by relating f ( u ; 𝐲 ) to the normal form (36.2.1) of Φ K ( t ; 𝐱 ) in the following way: …with the K + 1 functions A ( 𝐲 ) and 𝐱 ( 𝐲 ) determined by correspondence of the K + 1 critical points of f and Φ K . … This technique can be applied to generate a hierarchy of approximations for the diffraction catastrophes Ψ K ( 𝐱 ; k ) in (36.2.10) away from 𝐱 = 𝟎 , in terms of canonical integrals Ψ J ( ξ ( 𝐱 ; k ) ) for J < K . For example, the diffraction catastrophe Ψ 2 ( x , y ; k ) defined by (36.2.10), and corresponding to the Pearcey integral (36.2.14), can be approximated by the Airy function Ψ 1 ( ξ ( x , y ; k ) ) when k is large, provided that x and y are not small. … For further information concerning integrals with several coalescing saddle points see Arnol’d et al. (1988), Berry and Howls (1993, 1994), Bleistein (1967), Duistermaat (1974), Ludwig (1966), Olde Daalhuis (2000), and Ursell (1972, 1980).
    30: 8 Incomplete Gamma and Related
    Functions