About the Project

integral identity

AdvancedHelp

(0.003 seconds)

1—10 of 61 matching pages

1: 36.9 Integral Identities
§36.9 Integral Identities
36.9.9 | Ψ ( E ) ( x , y , z ) | 2 = 8 π 2 3 2 / 3 0 0 2 π ( Ai ( 1 3 1 / 3 ( x + i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) Bi ( 1 3 1 / 3 ( x i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) ) u d u d θ .
2: Bibliography O
  • I. Olkin (1959) A class of integral identities with matrix argument. Duke Math. J. 26 (2), pp. 207–213.
  • 3: Bibliography W
  • H. S. Wilf and D. Zeilberger (1992a) An algorithmic proof theory for hypergeometric (ordinary and “ q ”) multisum/integral identities. Invent. Math. 108, pp. 575–633.
  • H. S. Wilf and D. Zeilberger (1992b) Rational function certification of multisum/integral/“ q identities. Bull. Amer. Math. Soc. (N.S.) 27 (1), pp. 148–153.
  • 4: 19.1 Special Notation
    R F ( x , y , z ) , R G ( x , y , z ) , and R J ( x , y , z , p ) are the symmetric (in x , y , and z ) integrals of the first, second, and third kinds; they are complete if exactly one of x , y , and z is identically 0. …
    5: 1.4 Calculus of One Variable
    1.4.32 f 2 2 a b | f ( x ) | 2 d x < .
    6: 24.7 Integral Representations
    §24.7 Integral Representations
    §24.7(i) Bernoulli and Euler Numbers
    The identities in this subsection hold for n = 1 , 2 , . …
    §24.7(ii) Bernoulli and Euler Polynomials
    Mellin–Barnes Integral
    7: 35.10 Methods of Computation
    Other methods include numerical quadrature applied to double and multiple integral representations. See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). Koev and Edelman (2006) utilizes combinatorial identities for the zonal polynomials to develop computational algorithms for approximating the series expansion (35.8.1). …
    8: 18.40 Methods of Computation
    18.40.4 lim N F N ( z ) = F ( z ) 1 μ 0 a b w ( x ) d x z x , z \ [ a , b ] ,
    9: 36.10 Differential Equations
    §36.10 Differential Equations
    K = 1 , fold: (36.10.6) is an identity. K = 2 , cusp: … K = 3 , swallowtail: … In terms of the normal forms (36.2.2) and (36.2.3), the Ψ ( U ) ( 𝐱 ) satisfy the following operator equations …
    10: 25.12 Polylogarithms
    25.12.11 Li s ( z ) z Γ ( s ) 0 x s 1 e x z d x ,