About the Project

generalized Bessel polynomials

AdvancedHelp

(0.008 seconds)

21—30 of 52 matching pages

21: Bibliography T
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1990a) Asymptotic estimates for Laguerre polynomials. Z. Angew. Math. Phys. 41 (1), pp. 114–126.
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • 22: 10.41 Asymptotic Expansions for Large Order
    §10.41 Asymptotic Expansions for Large Order
    §10.41(i) Asymptotic Forms
    §10.41(iv) Double Asymptotic Properties
    23: Bibliography G
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • W. Gautschi (1993) On the computation of generalized Fermi-Dirac and Bose-Einstein integrals. Comput. Phys. Comm. 74 (2), pp. 233–238.
  • V. X. Genest, L. Vinet, and A. Zhedanov (2016) The non-symmetric Wilson polynomials are the Bannai-Ito polynomials. Proc. Amer. Math. Soc. 144 (12), pp. 5217–5226.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • E. Grosswald (1978) Bessel Polynomials. Lecture Notes in Mathematics, Vol. 698, Springer, Berlin-New York.
  • 24: 14.15 Uniform Asymptotic Approximations
    In other words, the convergent hypergeometric series expansions of 𝖯 ν μ ( ± x ) are also generalized (and uniform) asymptotic expansions as μ , with scale 1 / Γ ( j + 1 + μ ) , j = 0 , 1 , 2 , ; compare §2.1(v). … Here I and K are the modified Bessel functions (§10.25(ii)). …
    14.15.11 𝖯 ν μ ( cos θ ) = 1 ν μ ( θ sin θ ) 1 / 2 ( J μ ( ( ν + 1 2 ) θ ) + O ( 1 ν ) env J μ ( ( ν + 1 2 ) θ ) ) ,
    For the Bessel functions J and Y see §10.2(ii), and for the env functions associated with J and Y see §2.8(iv). … See also Olver (1997b, pp. 311–313) and §18.15(iii) for a generalized asymptotic expansion in terms of elementary functions for Legendre polynomials P n ( cos θ ) as n with θ fixed. …
    25: 18.39 Applications in the Physical Sciences
    The functions ϕ n are expressed in terms of Romanovski–Bessel polynomials, or Laguerre polynomials by (18.34.7_1). The finite system of functions ψ n is orthonormal in L 2 ( , d x ) , see (18.34.7_3). … The associated Coulomb–Laguerre polynomials are defined as …
    §18.39(iv) Coulomb–Pollaczek Polynomials and J-Matrix Methods
    The Coulomb–Pollaczek Polynomials
    26: Bibliography B
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1964) Generalized Hypergeometric Series. Stechert-Hafner, Inc., New York.
  • P. Baldwin (1985) Zeros of generalized Airy functions. Mathematika 32 (1), pp. 104–117.
  • C. Brezinski (1980) Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, Vol. 50, Birkhäuser Verlag, Basel.
  • 27: 18.38 Mathematical Applications
    Approximation Theory
    Integrable Systems
    The Askey–Gasper inequalityIf we consider this abstract algebra with additional relation (18.38.9) and with dependence on a , b , c , d according to (18.38.7) then it is isomorphic with the algebra generated by K 0 = L given by (18.28.6_2), ( K 1 f ) ( z ) = ( z + z 1 ) f ( z ) and K 2 given by (18.38.4), and K 0 , K 1 , K 2 act on the linear span of the Askey–Wilson polynomials (18.28.1). …
    28: Bibliography K
  • R. P. Kanwal (1983) Generalized functions. Mathematics in Science and Engineering, Vol. 171, Academic Press, Inc., Orlando, FL.
  • T. Kasuga and R. Sakai (2003) Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (1), pp. 13–53.
  • K. S. Kölbig (1986) Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17 (5), pp. 1232–1258.
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • T. H. Koornwinder (2012) Askey-Wilson polynomial. Scholarpedia 7 (7), pp. 7761.
  • 29: Bibliography I
  • Y. Ikebe, Y. Kikuchi, and I. Fujishiro (1991) Computing zeros and orders of Bessel functions. J. Comput. Appl. Math. 38 (1-3), pp. 169–184.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail (2000a) An electrostatics model for zeros of general orthogonal polynomials. Pacific J. Math. 193 (2), pp. 355–369.
  • M. E. H. Ismail (2005) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • 30: Bibliography E
  • Á. Elbert (2001) Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (1-2), pp. 65–83.
  • E. Elizalde (1986) An asymptotic expansion for the first derivative of the generalized Riemann zeta function. Math. Comp. 47 (175), pp. 347–350.
  • D. Elliott (1971) Uniform asymptotic expansions of the Jacobi polynomials and an associated function. Math. Comp. 25 (114), pp. 309–315.
  • R. Ernvall (1979) Generalized Bernoulli numbers, generalized irregular primes, and class number. Ann. Univ. Turku. Ser. A I 178, pp. 1–72.
  • W. D. Evans, W. N. Everitt, K. H. Kwon, and L. L. Littlejohn (1993) Real orthogonalizing weights for Bessel polynomials. J. Comput. Appl. Math. 49 (1-3), pp. 51–57.