About the Project

for%20ratios

AdvancedHelp

(0.001 seconds)

11—20 of 33 matching pages

11: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • J. L. Fields (1966) A note on the asymptotic expansion of a ratio of gamma functions. Proc. Edinburgh Math. Soc. (2) 15, pp. 43–45.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 12: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    13: 28.8 Asymptotic Expansions for Large q
    28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    28.8.2 b m + 1 ( h 2 ) a m ( h 2 ) = 2 4 m + 5 m ! ( 2 π ) 1 / 2 h m + ( 3 / 2 ) e 4 h ( 1 6 m 2 + 14 m + 7 32 h + O ( 1 h 2 ) ) .
    28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
    28.8.7 S ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 2 m + 1 8 h + m 4 + 2 m 3 121 m 2 122 m 84 2048 h 2 + ) 1 / 2 .
    28.8.9 W m ± ( x ) = e ± 2 h sin x ( cos x ) m + 1 { ( cos ( 1 2 x + 1 4 π ) ) 2 m + 1 , ( sin ( 1 2 x + 1 4 π ) ) 2 m + 1 ,
    14: 14.30 Spherical and Spheroidal Harmonics
    14.30.1 Y l , m ( θ , ϕ ) = ( ( l m ) ! ( 2 l + 1 ) 4 π ( l + m ) ! ) 1 / 2 e i m ϕ 𝖯 l m ( cos θ ) ,
    14.30.3 Y l , m ( θ , ϕ ) = ( 1 ) l + m 2 l l ! ( ( l m ) ! ( 2 l + 1 ) 4 π ( l + m ) ! ) 1 / 2 e i m ϕ ( sin θ ) m ( d d ( cos θ ) ) l + m ( sin θ ) 2 l .
    14.30.4 Y l , m ( 0 , ϕ ) = { ( 2 l + 1 4 π ) 1 / 2 , m = 0 , 0 , | m | = 1 , 2 , 3 , ,
    14.30.7 Y l , m ( π θ , ϕ + π ) = ( 1 ) l Y l , m ( θ , ϕ ) .
    14.30.8_5 e t 𝐚 𝐱 = 4 π n = 0 m = n n t n r n λ m Y n , m ( θ , ϕ ) ( 2 n + 1 ) ( n + m ) ! ( n m ) ! ,
    15: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • A. Deaño, E. J. Huertas, and F. Marcellán (2013) Strong and ratio asymptotics for Laguerre polynomials revisited. J. Math. Anal. Appl. 403 (2), pp. 477–486.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 16: 5.11 Asymptotic Expansions
    Wrench (1968) gives exact values of g k up to g 20 . …
    5.11.7 Γ ( a z + b ) 2 π e a z ( a z ) a z + b ( 1 / 2 ) ,
    5.11.9 | Γ ( x + i y ) | 2 π | y | x ( 1 / 2 ) e π | y | / 2 ,
    5.11.10 Γ ( z ) = e z z z ( 2 π z ) 1 / 2 ( k = 0 K 1 g k z k + R K ( z ) ) , K = 1 , 2 , 3 , .
    §5.11(iii) Ratios
    17: 3.4 Differentiation
    B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
    B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
    B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
    B 2 6 = 1 60 ( 9 + 9 t 30 t 2 20 t 3 + 5 t 4 + 3 t 5 ) ,
    B 3 6 = 1 720 ( 12 + 8 t 45 t 2 20 t 3 + 15 t 4 + 6 t 5 ) .
    18: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 19: Bibliography P
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 20: 25.12 Polylogarithms
    25.12.4 Li 2 ( z ) + Li 2 ( 1 z ) = 1 6 π 2 1 2 ( ln ( z ) ) 2 , z [ 0 , ) .
    25.12.6 Li 2 ( x ) + Li 2 ( 1 x ) = 1 6 π 2 ( ln x ) ln ( 1 x ) , 0 < x < 1 .
    25.12.8 n = 1 cos ( n θ ) n 2 = π 2 6 π θ 2 + θ 2 4 .
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help