About the Project

exponential%20integrals

AdvancedHelp

(0.004 seconds)

21—30 of 37 matching pages

21: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • D. M. Smith (2011) Algorithm 911: multiple-precision exponential integral and related functions. ACM Trans. Math. Software 37 (4), pp. Art. 46, 16.
  • I. A. Stegun and R. Zucker (1974) Automatic computing methods for special functions. II. The exponential integral E n ( x ) . J. Res. Nat. Bur. Standards Sect. B 78B, pp. 199–216.
  • I. A. Stegun and R. Zucker (1976) Automatic computing methods for special functions. III. The sine, cosine, exponential integrals, and related functions. J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 291–311.
  • 22: 12.10 Uniform Asymptotic Expansions for Large Parameter
    12.10.3 U ( 1 2 μ 2 , μ t 2 ) g ( μ ) e μ 2 ξ ( t 2 1 ) 1 4 s = 0 𝒜 s ( t ) μ 2 s ,
    12.10.4 U ( 1 2 μ 2 , μ t 2 ) μ 2 g ( μ ) ( t 2 1 ) 1 4 e μ 2 ξ s = 0 s ( t ) μ 2 s ,
    12.10.15 h ( μ ) = 2 1 4 μ 2 1 4 e 1 4 μ 2 μ 1 2 μ 2 1 2 ,
    12.10.33 𝖠 s + 1 ( τ ) = 4 τ 2 ( τ + 1 ) 2 d d τ 𝖠 s ( τ ) 1 4 0 τ ( 20 u 2 + 20 u + 3 ) 𝖠 s ( u ) d u , s = 0 , 1 , 2 , ,
    𝖠 1 ( τ ) = 1 12 τ ( 20 τ 2 + 30 τ + 9 ) ,
    23: 36.4 Bifurcation Sets
    K = 1 , fold bifurcation set: …
    x = 9 20 z 2 .
    x = 3 20 z 2 ,
    x = 1 12 z 2 ( exp ( 2 τ ) ± 2 exp ( τ ) ) ,
    y = 1 12 z 2 ( exp ( 2 τ ) ± 2 exp ( τ ) ) , τ < .
    24: Software Index
    25: 20.11 Generalizations and Analogs
    20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
    20.11.2 1 n G ( m , n ) = 1 n k = 0 n 1 e π i k 2 m / n = e π i / 4 m j = 0 m 1 e π i j 2 n / m = e π i / 4 m G ( n , m ) .
    With the substitutions a = q e 2 i z , b = q e 2 i z , with q = e i π τ , we have … As in §20.11(ii), the modulus k of elliptic integrals19.2(ii)), Jacobian elliptic functions (§22.2), and Weierstrass elliptic functions (§23.6(ii)) can be expanded in q -series via (20.9.1). …
    26: 3.4 Differentiation
    If f can be extended analytically into the complex plane, then from Cauchy’s integral formula (§1.9(iii)) …The integral on the right-hand side can be approximated by the composite trapezoidal rule (3.5.2). … f ( z ) = e z , x 0 = 0 . The integral (3.4.18) becomes …With the choice r = k (which is crucial when k is large because of numerical cancellation) the integrand equals e k at the dominant points θ = 0 , 2 π , and in combination with the factor k k in front of the integral sign this gives a rough approximation to 1 / k ! . …
    27: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 28: Bibliography C
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1987) A numerical method for generalized exponential integrals. Comput. Math. Appl. 14 (4), pp. 261–268.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1988) On the evaluation of generalized exponential integrals E v ( x ) . J. Comput. Phys. 78 (2), pp. 278–287.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990a) An algorithm for exponential integrals of real order. Computing 45 (3), pp. 269–276.
  • C. Chiccoli, S. Lorenzutta, and G. Maino (1990b) On a Tricomi series representation for the generalized exponential integral. Internat. J. Comput. Math. 31, pp. 257–262.
  • M. S. Corrington (1961) Applications of the complex exponential integral. Math. Comp. 15 (73), pp. 1–6.
  • 29: 11.6 Asymptotic Expansions
    11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
    11.6.4 0 z 𝐌 0 ( t ) d t + 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | 1 2 π δ ,
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    30: 2.11 Remainder Terms; Stokes Phenomenon
    From §8.19(i) the generalized exponential integral is given by …However, on combining (2.11.6) with the connection formula (8.19.18), with m = 1 , we derive … Owing to the factor e ρ , that is, e | z | in (2.11.13), F n + p ( z ) is uniformly exponentially small compared with E p ( z ) . … A simple example is provided by Euler’s transformation (§3.9(ii)) applied to the asymptotic expansion for the exponential integral6.12(i)): … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …